Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 June 2020 | Story Lacea Loader

It has come to the attention of the University of the Free State (UFS) that false and inaccurate statements have been circulating on Twitter on 4 June 2020, claiming that its students were not equipped or supported to study remotely during the COVID-19 lockdown. The UFS believes that it is important to engage in dialogue to correct any misconceptions and inaccuracies that are at risk of being perpetuated.

Contrary to these reports, the UFS has invested much time and resources in the development and deployment of low-tech online and distance approaches to learning and teaching. Since March 2020, the university has undertaken extensive measures to support its students after classes were suspended and to ensure the continuation of the academic programme.

Statements on Twitter include a number of inaccuracies, which the university wants to correct:

• The Institutional Student Representative Council (ISRC) was not suspended by the Rector and Vice-Chancellor, Prof Francis Petersen. In fact, the university management regularly meets with the ISRC on matters of concern to them. Student representatives also serve on a number of institutional committees – both before and during the national lockdown.
• No deregistration of any students has taken place.
• Since the end of April 2020, structured and managed data was provided to students to obtain access to academic content as well as to the academic platforms for free. However, to access this free data, students need to download the GlobalProtect app – this was communicated numerously and explained to students.  The university’s ICT Services will provide video and technical guides to all students to assist them with downloading the app.
• As of June 2020, all allowances for which students qualify and which are approved by NSFAS, have been paid by the university.
• Although online learning provides a solution to continue with programme delivery, the university is deeply aware of the fact that access may be a barrier – especially during these extraordinary times.  To assist vulnerable students, a total of 3 500 laptops have been procured by the UFS, enabling the university to assist eligible students in accessing the online platforms, obtaining learning material, and engaging with lecturers. The university is in the process of distributing the laptops to students who qualify. The Department of Higher Education, Science and Innovation’s process to provide laptops to students is separate from the 3 500 laptops procured by the UFS.  

The UFS remains committed to supporting its students in response to COVID-19 and is looking forward to working as a community to prepare for the institution’s response to the new challenges of responsibly returning to campus life from June 2020 onward. As staff and students start returning to the institution in a phased approach this month, the UFS will continue to comply with all applicable governmental directives and health guidelines to ensure the safety, health, and well-being of its students and staff.

Released by:
Lacea Loader (Director: Communication and Marketing)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept