Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
03 June 2020 | Story Lacea Loader

On 1 June 2020, the University of the Free State (UFS) received confirmation from the Member of the Executive Council (MEC) for Sport, Arts, Culture and Recreation, Ms Limakatso Mahasa, that the relocation of the statue to the War Museum in Bloemfontein has been endorsed. The university was also informed that a permit will now be issued by the Free State Provincial Heritage Resources Authority (FSPHRA) for the dismantling, temporary storage, and relocation of the statue to the War Museum.

The notice from MEC Mahasa comes after the Appeal Committee of the FSPHRA decided on 20 August 2019 to uphold appeals from interested parties and to keep the statue at the UFS. Subsequently, the Special Task Team appointed by Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, to develop and implement a framework to engage with a review process on the position of the statue in front of the Main Building on the Bloemfontein Campus, submitted an urgent request to MEC Mahasa to appoint a tribunal and refer the university’s appeal in terms of and in accordance with the provisions of Section 49(2) of the National Heritage Resources Act (NHRA), No 25 of 1999.

“The university’s executive appreciates the endorsement by MEC Mahasa and is satisfied with the findings of the Tribunal Committee, which supports the relocation of the statue. The University Council approved the relocation of the statue on 23 November 2018, after which an extensive process was followed to obtain a permit from the FSPHRA to relocate the statue. The Special Task Team went to great lengths to demonstrate the thoroughness of the public participation process and other supportive steps taken by the university,” says Prof Petersen.

“As there is no precedent for such a public participation process under the current South African law, the Special Task Team was at all times guided by the principles of fairness, inclusivity, and objectivity. It was not an easy process, but the outcome is a significant milestone,” says Prof Petersen.

The findings of the Tribunal Committee include, inter alia, that the university has followed the correct application procedure for the permit, that a proper public participation process was followed that was more comprehensive than required by law, and that no procedural unfairness took place during the public participation process. The Tribunal Committee furthermore found that the decision by the FSPHRA on 30 April 2019 to issue the permit was correct, and that the Appeals Committee appointed by the FSPHRA erred in its decision to uphold the appeal. As a pre-condition, the Tribunal Committee also determined that a conservation plan must be prepared by the university in order to address the process of relocating the statue.

According to Prof Petersen, the university welcomes the findings of the Tribunal Committee as it is in line with the Heritage Impact Assessment Report (HIA) and conservation plan initially submitted to the FSPHRA as part of the application for a permit.   

“While we await the issuing of the permit by the FSPHRA, we will now proceed with the necessary arrangements for the relocation of the statue, such as appointing a team for the dismantling, temporary storage, and re-assembly of the statue at the War Museum and appointing a heritage architect to oversee the process. The wishes of President Steyn’s family will be accommodated during the relocation process, as per the findings of the Tribunal Committee,” he says.  

Released by:
Lacea Loader (Director: Communication and Marketing)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept