Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
03 June 2020 | Story Lacea Loader

On 1 June 2020, the University of the Free State (UFS) received confirmation from the Member of the Executive Council (MEC) for Sport, Arts, Culture and Recreation, Ms Limakatso Mahasa, that the relocation of the statue to the War Museum in Bloemfontein has been endorsed. The university was also informed that a permit will now be issued by the Free State Provincial Heritage Resources Authority (FSPHRA) for the dismantling, temporary storage, and relocation of the statue to the War Museum.

The notice from MEC Mahasa comes after the Appeal Committee of the FSPHRA decided on 20 August 2019 to uphold appeals from interested parties and to keep the statue at the UFS. Subsequently, the Special Task Team appointed by Prof Francis Petersen, Rector and Vice-Chancellor of the UFS, to develop and implement a framework to engage with a review process on the position of the statue in front of the Main Building on the Bloemfontein Campus, submitted an urgent request to MEC Mahasa to appoint a tribunal and refer the university’s appeal in terms of and in accordance with the provisions of Section 49(2) of the National Heritage Resources Act (NHRA), No 25 of 1999.

“The university’s executive appreciates the endorsement by MEC Mahasa and is satisfied with the findings of the Tribunal Committee, which supports the relocation of the statue. The University Council approved the relocation of the statue on 23 November 2018, after which an extensive process was followed to obtain a permit from the FSPHRA to relocate the statue. The Special Task Team went to great lengths to demonstrate the thoroughness of the public participation process and other supportive steps taken by the university,” says Prof Petersen.

“As there is no precedent for such a public participation process under the current South African law, the Special Task Team was at all times guided by the principles of fairness, inclusivity, and objectivity. It was not an easy process, but the outcome is a significant milestone,” says Prof Petersen.

The findings of the Tribunal Committee include, inter alia, that the university has followed the correct application procedure for the permit, that a proper public participation process was followed that was more comprehensive than required by law, and that no procedural unfairness took place during the public participation process. The Tribunal Committee furthermore found that the decision by the FSPHRA on 30 April 2019 to issue the permit was correct, and that the Appeals Committee appointed by the FSPHRA erred in its decision to uphold the appeal. As a pre-condition, the Tribunal Committee also determined that a conservation plan must be prepared by the university in order to address the process of relocating the statue.

According to Prof Petersen, the university welcomes the findings of the Tribunal Committee as it is in line with the Heritage Impact Assessment Report (HIA) and conservation plan initially submitted to the FSPHRA as part of the application for a permit.   

“While we await the issuing of the permit by the FSPHRA, we will now proceed with the necessary arrangements for the relocation of the statue, such as appointing a team for the dismantling, temporary storage, and re-assembly of the statue at the War Museum and appointing a heritage architect to oversee the process. The wishes of President Steyn’s family will be accommodated during the relocation process, as per the findings of the Tribunal Committee,” he says.  

Released by:
Lacea Loader (Director: Communication and Marketing)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept