Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
08 August 2019 | Story Leonie Bolleurs
Zama Zama
Michelle Goliath played a major role in establishing the first ethically sourced, fair, women-owned, artisanal diamond process.

Michelle Goliath, a PhD student in the Department of Urban and Regional Planning at the UFS, has a passion for helping the most vulnerable people in society who have run out of conventional employment options. 

“My research includes ‘Zamaism’ psychology, a philosophy which looks at the contestation of space and rules, how people navigate the illegal when they are faced with desperate choices,” she explains.  

Michelle has been working with approximately 3 000 diamond mining ‘Zama Zamas’ (criminal miners) over the past three years. Together, they negotiated an agreement with private sector mining and public sector stakeholders to include the Zama Zamas as legal artisan miners in the formal mining economy.

One of the highlights of her career so far was being part of a big first: the complete, ethically sourced, fair, women-owned, artisanal diamond process.

Michelle explains: “A rough stone includes the story of the women who dig it from the earth, legally (under permit), ethically sourced. Instead of being exploited, the same women now sell their diamonds for full value to a legal tender house through a legal buyer or directly to the cutter and polisher. The cutter and polisher also train the women to cut and polish the stones themselves. The women then sell the stones to jewellery gold- and silver-‘smiths’ who artisanally craft this into an engagement ring or ‘Wakanda gem spear’, to be sold in the open market locally and internationally.”

She believes these products will become priceless works of art. “Like Picasso paintings, they are each uniquely produced by hand with a story and Kimberley process certificates,” she adds.

The story of the women

This project had a big impact on Elisa Louw, a former street seller and domestic worker. She tells her story: “I was tired of domestic work and decided to work at the mines as a Zama Zama. I began with nothing and had to borrow tools and learn from others.”

Elisa started working in the mines in 2013; in 2014, she found her first 75-pointer diamond which she sold for R1 500 on the black market. “The black market was good then,” she said.

She later recruited other Zama Zamas to register and obtain legal permits for mining. Elisa mined from 08:00 to 12:00 and from 13:00 to 16:00 she recruited people to start a legal mining co-op. “It was difficult then. People did not understand what it meant to be legalised,” Elisa explains.

But she worked hard and at the end of 2016, the Batho Pele Primary Mining Cooperative was established.

However, it was a hard and difficult journey before they were given their permits early in 2017. The mines took their IDs and issued them with eviction letters. “They called us names – terrorists, robbers, rapists, etc. But in a meeting with the South African Police Service, the Department of Mineral Resources, the Sol Plaatje Municipality, and the international Swedish Housing Company, Michelle spoke for us.”

“She represented the Swedish Housing Company and we thank the Lord for sending her to us. She informed all parties that we did not want to fight, but that we were looking for a licence to work. She helped us to obtain our legal permit to mine.”

“It was such a relief when we received the permit. I could go home and sleep without worrying about the safety of the old people and children who are mining.

“The permit changed my life as a woman. My voice is heard; my words count. I am proud of myself,” says Elisa. 

The two cooperatives they created, Batho Pele Primary Mining Cooperative and the Women in Artisanal Scale Mining, have already signed agreements with Canada and the USA for the export of fair-trade-certified gem products.

Blood, sweat and tears

The journey towards this big achievement took two years of literally blood, sweat, and tears. “Society labels Zama Zamas negatively as terrorists. In a way, you become a Zama at heart once you live with people every day who are fighting for economic inclusion. You fight the illegal diamond trade that exploited people as digging slaves. You fight formal mining, which is a difficult sector to enter as a woman. You literally fight others with stones for territory. You fight political fights, land fights, the system at every level, to seek an existence,” Michelle explains.

She believes the mining industry can be a tough environment. “It is exploitative at many levels. It showcases rare talent, but under duress. At artisanal scale it is even worse. The only future women have, is to lead themselves, to create their own fairer system, to redesign a full value chain that allows broader participation,” states Michelle.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept