Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
08 August 2019 | Story Leonie Bolleurs
Zama Zama
Michelle Goliath played a major role in establishing the first ethically sourced, fair, women-owned, artisanal diamond process.

Michelle Goliath, a PhD student in the Department of Urban and Regional Planning at the UFS, has a passion for helping the most vulnerable people in society who have run out of conventional employment options. 

“My research includes ‘Zamaism’ psychology, a philosophy which looks at the contestation of space and rules, how people navigate the illegal when they are faced with desperate choices,” she explains.  

Michelle has been working with approximately 3 000 diamond mining ‘Zama Zamas’ (criminal miners) over the past three years. Together, they negotiated an agreement with private sector mining and public sector stakeholders to include the Zama Zamas as legal artisan miners in the formal mining economy.

One of the highlights of her career so far was being part of a big first: the complete, ethically sourced, fair, women-owned, artisanal diamond process.

Michelle explains: “A rough stone includes the story of the women who dig it from the earth, legally (under permit), ethically sourced. Instead of being exploited, the same women now sell their diamonds for full value to a legal tender house through a legal buyer or directly to the cutter and polisher. The cutter and polisher also train the women to cut and polish the stones themselves. The women then sell the stones to jewellery gold- and silver-‘smiths’ who artisanally craft this into an engagement ring or ‘Wakanda gem spear’, to be sold in the open market locally and internationally.”

She believes these products will become priceless works of art. “Like Picasso paintings, they are each uniquely produced by hand with a story and Kimberley process certificates,” she adds.

The story of the women

This project had a big impact on Elisa Louw, a former street seller and domestic worker. She tells her story: “I was tired of domestic work and decided to work at the mines as a Zama Zama. I began with nothing and had to borrow tools and learn from others.”

Elisa started working in the mines in 2013; in 2014, she found her first 75-pointer diamond which she sold for R1 500 on the black market. “The black market was good then,” she said.

She later recruited other Zama Zamas to register and obtain legal permits for mining. Elisa mined from 08:00 to 12:00 and from 13:00 to 16:00 she recruited people to start a legal mining co-op. “It was difficult then. People did not understand what it meant to be legalised,” Elisa explains.

But she worked hard and at the end of 2016, the Batho Pele Primary Mining Cooperative was established.

However, it was a hard and difficult journey before they were given their permits early in 2017. The mines took their IDs and issued them with eviction letters. “They called us names – terrorists, robbers, rapists, etc. But in a meeting with the South African Police Service, the Department of Mineral Resources, the Sol Plaatje Municipality, and the international Swedish Housing Company, Michelle spoke for us.”

“She represented the Swedish Housing Company and we thank the Lord for sending her to us. She informed all parties that we did not want to fight, but that we were looking for a licence to work. She helped us to obtain our legal permit to mine.”

“It was such a relief when we received the permit. I could go home and sleep without worrying about the safety of the old people and children who are mining.

“The permit changed my life as a woman. My voice is heard; my words count. I am proud of myself,” says Elisa. 

The two cooperatives they created, Batho Pele Primary Mining Cooperative and the Women in Artisanal Scale Mining, have already signed agreements with Canada and the USA for the export of fair-trade-certified gem products.

Blood, sweat and tears

The journey towards this big achievement took two years of literally blood, sweat, and tears. “Society labels Zama Zamas negatively as terrorists. In a way, you become a Zama at heart once you live with people every day who are fighting for economic inclusion. You fight the illegal diamond trade that exploited people as digging slaves. You fight formal mining, which is a difficult sector to enter as a woman. You literally fight others with stones for territory. You fight political fights, land fights, the system at every level, to seek an existence,” Michelle explains.

She believes the mining industry can be a tough environment. “It is exploitative at many levels. It showcases rare talent, but under duress. At artisanal scale it is even worse. The only future women have, is to lead themselves, to create their own fairer system, to redesign a full value chain that allows broader participation,” states Michelle.

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept