Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
18 July 2019 | Story Julian Roup | Photo Leonie Bolleurs
Clear glass
UFS researchers Lucas Erasmus (left), researcher in the UFS Department of Physics and Prof Hendrik Swart, senior professor in the UFS Department of Physics and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, with the equipment used for the ground-breaking research.

A revolutionary new type of window glass – in effect a transparent solar panel - is the objective of joint research being done by the University of the Free State (UFS) in South Africa and Ghent University in Belgium. 

A working model has been created which proves the viability of the process which now needs to be refined, made more efficient and brought to the market. It is hoped to achieve this within a decade.

This new product will have the capacity to revolutionise the generation of power cheaply from the sun to power homes, factories and cities in a new clean way.

Academics from the UFS, Prof Hendrik Swart and Lucas Erasmus are doing joint research with Ghent University in Belgium, to find solutions for energy production. 

The two universities entered into an agreement recently for this research into electricity generation. The research is driven by the UFS and was prompted by ever-rising electricity prices and growing demand for electricity production. South Africa lives with constant power outages which leaves people stuck in lifts and facing chaos on the roads as traffic lights cut out. Many people who can afford them now rely on generators.

Prof Hendrik Swart, senior professor in the Department of Physics at the University of the Free State and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, says: “An innovation like this which can help to replace traditional means of carbon based fuel for power generation in our daily lives would be hugely welcome.”

Swart explains the main objective of the research: “The idea is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted and concentrated to the sides of the glass panel where solar panels can be mounted. 

This invisible light can then be used to generate electricity to power buildings, vehicles and electronic devices. The goal is therefore to create a type of transparent solar panel.”

Swart says this technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. “The technology is also good news for the 4.7 billion cell phone users in the world, as it can be implemented in the screens of cell phones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance,” he said.

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Lucas Erasmus who is working with Prof Swart adds: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs. This will allow visible diffused light to enter housing and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and in return, reducing the cost.”

It is envisaged that the technology will take about a decade to refine and implement. This study is currently on-going, and UFS are experimenting and testing different materials in order to optimise the device in the laboratory. It then needs to be upscaled in order to test it in the field. “It is truly the technology of the future,” says 
Erasmus.

The UFS envisages that the end result of this research will provide an attractive solution to address the energy demands of buildings, electric motor vehicles and mobile electronics without affecting their appearance. 

According to Swart, the agreement entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. Lucas Erasmus, a student at the UFS, has been tasked with the assignment to conduct research at both institutions.

News Archive

UFS cardiac team leading with project
2017-05-31

 Description: Cardiac team read more Tags: Cardiac team read more

Prof Peter Schultheiss of the Charité University in Berlin,
Germany, visited the Robert WM Frater Centre for
Cardiovascular Research at the UFS for a study regarding
cardiomyopathy, a significant cause of fatal heart failure
among Africans. From the left are Dr Glen Taylor,
Dr Danie Buys, Prof Makoali Makatoko,
Prof Schultheiss and Prof Francis Smit.
Photo: Rulanzen Martin

A team of cardiac doctors associated with the Robert WM Frater Cardiovascular Research Centre at the University of the Free State’s (UFS) Faculty of Health Sciences has commenced with a pioneering research project regarding idiopathic dilating cardiomyopathy.  

An Afrocentric research focus
Prof Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS and Head of the Frater Centre, describes dilating cardiomyopathy as a heart muscle disease that is quite common, particularly among people of African descent. The disease weakens the heart muscle, which in turn leads to heart failure.

“To date there is no curable treatment for this condition and 50% of patients that have shown heart failure, died within a period of five years. The causes of this condition have been unknown in the majority of patients. But over the past few years major strides have been made where virus infections of the heart muscle or myocarditis have been identified as a possible underlying cause. Various genetic diseases are also linked to it,” says Prof Smit.

International collaborations ensure success
According to Prof Smit, the project is being run in conjunction with Prof Heinz-Peter Schultheiss of the Charité University and the Institute for Cardiac Diagnostics and Therapy in Berlin, Germany.

“We have been working on the project over the past 18 months and I have twice visited Prof Schultheiss in Germany. He is now visiting us in Bloemfontein. We have established a collaborative project focused on patients in central South Africa”.
Prof Schultheiss is a world leader regarding the diagnosis, pathology and treatment of dilating cardiomyopathy, says Prof Smit.

“He brings a lifetime of research experience to Bloemfontein and is internationally renowned as the father of myocardial or heart muscle biopsies.

“His pioneering work on the discipline has led to diagnostic accuracy that has induced purposeful and personalised treatment of dilating cardiomyopathy and has brought about dramatic changes in some subsets of patients’ life expectancy and their cure.”

Solving problems close to home
According to Prof Mokoali Makatoko, Head of the Department of Cardiology, there are more than 1500 new cases of heart failure identified annually at the Universitas Academic Hospital, of which approximately 30% are attributed to cardiomyopathy. “With the use of endomyocardial biopsies the team hopes to treat viruses unique to Southern Africa as well as other underlying causes of dilating cardiomyopathy.”

Prof Stephen Brown, Head of Paediatric Cardiology at the Universitas Academic Hospital, says children suffering from this disease never reach a mature age and those under his supervision will also be undergoing these tests. Various other departments at the UFS will also participate in this project. Profs Makatoko and Brown did the first four endomyocardial biopsies under the management of Prof Schultheiss during the past week. The results will be available in the coming weeks after which the project will be officially launched and patient recruitment will start in earnest.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept