Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
18 July 2019 | Story Julian Roup | Photo Leonie Bolleurs
Clear glass
UFS researchers Lucas Erasmus (left), researcher in the UFS Department of Physics and Prof Hendrik Swart, senior professor in the UFS Department of Physics and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, with the equipment used for the ground-breaking research.

A revolutionary new type of window glass – in effect a transparent solar panel - is the objective of joint research being done by the University of the Free State (UFS) in South Africa and Ghent University in Belgium. 

A working model has been created which proves the viability of the process which now needs to be refined, made more efficient and brought to the market. It is hoped to achieve this within a decade.

This new product will have the capacity to revolutionise the generation of power cheaply from the sun to power homes, factories and cities in a new clean way.

Academics from the UFS, Prof Hendrik Swart and Lucas Erasmus are doing joint research with Ghent University in Belgium, to find solutions for energy production. 

The two universities entered into an agreement recently for this research into electricity generation. The research is driven by the UFS and was prompted by ever-rising electricity prices and growing demand for electricity production. South Africa lives with constant power outages which leaves people stuck in lifts and facing chaos on the roads as traffic lights cut out. Many people who can afford them now rely on generators.

Prof Hendrik Swart, senior professor in the Department of Physics at the University of the Free State and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, says: “An innovation like this which can help to replace traditional means of carbon based fuel for power generation in our daily lives would be hugely welcome.”

Swart explains the main objective of the research: “The idea is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted and concentrated to the sides of the glass panel where solar panels can be mounted. 

This invisible light can then be used to generate electricity to power buildings, vehicles and electronic devices. The goal is therefore to create a type of transparent solar panel.”

Swart says this technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. “The technology is also good news for the 4.7 billion cell phone users in the world, as it can be implemented in the screens of cell phones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance,” he said.

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Lucas Erasmus who is working with Prof Swart adds: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs. This will allow visible diffused light to enter housing and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and in return, reducing the cost.”

It is envisaged that the technology will take about a decade to refine and implement. This study is currently on-going, and UFS are experimenting and testing different materials in order to optimise the device in the laboratory. It then needs to be upscaled in order to test it in the field. “It is truly the technology of the future,” says 
Erasmus.

The UFS envisages that the end result of this research will provide an attractive solution to address the energy demands of buildings, electric motor vehicles and mobile electronics without affecting their appearance. 

According to Swart, the agreement entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. Lucas Erasmus, a student at the UFS, has been tasked with the assignment to conduct research at both institutions.

News Archive

Louzanne breaks own world record in Switzerland
2017-06-09

Description: Louzanne breaks own world record  Tags: Louzanne breaks own world record

Rufus Botha (left), coach of the athlete Louzanne Coetzee,
went overseas with Coetzee and her guide,
Khothatso Mokone, for a race for the first time.
Coetzee improved her T11 5 000 m world record with more
than 20 seconds in Switzerland.
Photo: Johan Roux

She fought against illness, had to get the green light from medical personnel shortly before her main race, and was very nervous. However, on 5 June 2017, the blind athlete Louzanne Coetzee managed to improve the T11 5 000 m world record with more than 20 seconds.

The Kovsie star’s time of 18:14.27 at the ParAthletics Grand Prix in Nottwil, Switzerland, was approximately 23 seconds faster than her previous world record (18:37.23). In addition, Coetzee, who works at the Institute for Reconciliation and Social Justice at the University of the Free State, also improved the South African T11 800 m record to 2:30.18 on 2 June 2017, and her 4:59.54 on 3 June 2017 in the T11 1 500 m was almost another national record.

Carried by UFS and other support
“One could never be ungrateful when running close to your personal best,” Coetzee said. “Fortunately, with God’s blessing, the support of everybody at home, support from the university, as well as my mom and them, it really was a very blessed and successful event.”

According to her coach, Rufus Botha, Coetzee was not feeling well before the event and had to get medical clearance before the 5 000 m. He told her not to run too hard, even though their goal was 18:20. “She ran an incredible final 600 m, which brought the time down to 18:14,” he said. “It was amazing to watch.”

Botha’s knowledge valuable abroad
He enjoyed going overseas with Coetzee and her guide, Khothatso Mokone, for the first time. “His (Botha’s) experience, knowledge, support, and coaching was extremely valuable,” Coetzee said. “It will definitely help me in future: how to approach things, and everything he shared with us.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept