Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
18 July 2019 | Story Julian Roup | Photo Leonie Bolleurs
Clear glass
UFS researchers Lucas Erasmus (left), researcher in the UFS Department of Physics and Prof Hendrik Swart, senior professor in the UFS Department of Physics and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, with the equipment used for the ground-breaking research.

A revolutionary new type of window glass – in effect a transparent solar panel - is the objective of joint research being done by the University of the Free State (UFS) in South Africa and Ghent University in Belgium. 

A working model has been created which proves the viability of the process which now needs to be refined, made more efficient and brought to the market. It is hoped to achieve this within a decade.

This new product will have the capacity to revolutionise the generation of power cheaply from the sun to power homes, factories and cities in a new clean way.

Academics from the UFS, Prof Hendrik Swart and Lucas Erasmus are doing joint research with Ghent University in Belgium, to find solutions for energy production. 

The two universities entered into an agreement recently for this research into electricity generation. The research is driven by the UFS and was prompted by ever-rising electricity prices and growing demand for electricity production. South Africa lives with constant power outages which leaves people stuck in lifts and facing chaos on the roads as traffic lights cut out. Many people who can afford them now rely on generators.

Prof Hendrik Swart, senior professor in the Department of Physics at the University of the Free State and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, says: “An innovation like this which can help to replace traditional means of carbon based fuel for power generation in our daily lives would be hugely welcome.”

Swart explains the main objective of the research: “The idea is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted and concentrated to the sides of the glass panel where solar panels can be mounted. 

This invisible light can then be used to generate electricity to power buildings, vehicles and electronic devices. The goal is therefore to create a type of transparent solar panel.”

Swart says this technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. “The technology is also good news for the 4.7 billion cell phone users in the world, as it can be implemented in the screens of cell phones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance,” he said.

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Lucas Erasmus who is working with Prof Swart adds: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs. This will allow visible diffused light to enter housing and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and in return, reducing the cost.”

It is envisaged that the technology will take about a decade to refine and implement. This study is currently on-going, and UFS are experimenting and testing different materials in order to optimise the device in the laboratory. It then needs to be upscaled in order to test it in the field. “It is truly the technology of the future,” says 
Erasmus.

The UFS envisages that the end result of this research will provide an attractive solution to address the energy demands of buildings, electric motor vehicles and mobile electronics without affecting their appearance. 

According to Swart, the agreement entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. Lucas Erasmus, a student at the UFS, has been tasked with the assignment to conduct research at both institutions.

News Archive

From wheat protein to perfect pizza
2017-09-26

Description: Phd Read more Tags: Barend Wentzel, Department of Plant Sciences, plant breeding, proteins, Agricultural Research Council 

Barend Wentzel received his PhD at the Department
of Plant Sciences during the university’s
winter graduation ceremony.
He is pictured here with Prof Maryke Labuschagne,
professor in Plant Breeding at the UFS.
Photo: Charl Devenish

Barend Wentzel, an alumnus of the University of the Free State’s Department of Plant Sciences, is passionate about plant breeding. 

He literally eats and lives wheat proteins. In 1989 he initiated a breeding programme on arum lilies. “This breeding programme is at an advanced stage,” he said. Besides reading, playing the piano and accordion, Barend, due to the nature of his research at the Agricultural Research Council, also experiments with different types of ciabatta recipes made from sour dough. “I usually make my own pizza on Saturday evenings,” he said.

He is working at the Agricultural Research Council – Small Grain (ARC-SG) at the Wheat Quality Laboratory where he established a Cereal Chemistry Laboratory.

Complexity of flour quality

He explains that the focus of his research is on wheat protein composition. “The research conducted for my PhD study explains the complexity of flour quality to a certain extent, and it further emphasises the influence of the environment and genetic composition on selected baking characteristics. 

“Wheat protein can be divided into different types of protein fractions. These protein fractions contribute differently to dough properties and baking quality and the expression is affected by different components in the environment, including locality, rainfall and temperature. 

“Protein content alone does, however, not explain the variation in baking quality parameters, such as mixing time, dough strength and extensibility, and loaf volume.

“Several methods can be applied to quantify the different protein fractions. I am using high-performance liquid-chromatography (HPLC). The procedure entails the separation of a wheat protein extract through a column with chromatographic packing material. The injected sample is pumped through the column (known as the stationary phase) with a solvent (known as the mobile phase). The specific procedure, size-exclusion high-performance liquid-chromatography (SE-HPLC), is also used by the university’s Department of Plant Breeding, as well as in several international Cereal Chemistry Laboratories,” said Barend.

Dough strength and to loaf volume
“One of the highlights from the study was the positive contribution of the albumin and globulin protein fractions to dough strength and to loaf volume. The findings were wheat cultivar specific and the growing environment influenced the expression. The contribution of these protein fractions was much larger than previously reported for South African wheat cultivars,” said Barend. 
“Previous reports indicated that these protein fractions had a non-specific contribution to the gluten network during dough formation. The findings from this PhD justify further research on albumins and globulin proteins.” 

The Cereal Chemistry Laboratory at ARC-SG is involved in postgraduate student training under Barend’s guidance. He serves as co-promoter for several MSc and PhD students. He is also a collaborator on an international project with the International Maize and Wheat Improvement Centre (CIMMYT) in Mexico. Barend is furthermore working on improving wheat quality for processing and health purposes as a member of the expert working group of the International Wheat Initiative. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept