Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
18 July 2019 | Story Julian Roup | Photo Leonie Bolleurs
Clear glass
UFS researchers Lucas Erasmus (left), researcher in the UFS Department of Physics and Prof Hendrik Swart, senior professor in the UFS Department of Physics and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, with the equipment used for the ground-breaking research.

A revolutionary new type of window glass – in effect a transparent solar panel - is the objective of joint research being done by the University of the Free State (UFS) in South Africa and Ghent University in Belgium. 

A working model has been created which proves the viability of the process which now needs to be refined, made more efficient and brought to the market. It is hoped to achieve this within a decade.

This new product will have the capacity to revolutionise the generation of power cheaply from the sun to power homes, factories and cities in a new clean way.

Academics from the UFS, Prof Hendrik Swart and Lucas Erasmus are doing joint research with Ghent University in Belgium, to find solutions for energy production. 

The two universities entered into an agreement recently for this research into electricity generation. The research is driven by the UFS and was prompted by ever-rising electricity prices and growing demand for electricity production. South Africa lives with constant power outages which leaves people stuck in lifts and facing chaos on the roads as traffic lights cut out. Many people who can afford them now rely on generators.

Prof Hendrik Swart, senior professor in the Department of Physics at the University of the Free State and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, says: “An innovation like this which can help to replace traditional means of carbon based fuel for power generation in our daily lives would be hugely welcome.”

Swart explains the main objective of the research: “The idea is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted and concentrated to the sides of the glass panel where solar panels can be mounted. 

This invisible light can then be used to generate electricity to power buildings, vehicles and electronic devices. The goal is therefore to create a type of transparent solar panel.”

Swart says this technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. “The technology is also good news for the 4.7 billion cell phone users in the world, as it can be implemented in the screens of cell phones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance,” he said.

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Lucas Erasmus who is working with Prof Swart adds: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs. This will allow visible diffused light to enter housing and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and in return, reducing the cost.”

It is envisaged that the technology will take about a decade to refine and implement. This study is currently on-going, and UFS are experimenting and testing different materials in order to optimise the device in the laboratory. It then needs to be upscaled in order to test it in the field. “It is truly the technology of the future,” says 
Erasmus.

The UFS envisages that the end result of this research will provide an attractive solution to address the energy demands of buildings, electric motor vehicles and mobile electronics without affecting their appearance. 

According to Swart, the agreement entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. Lucas Erasmus, a student at the UFS, has been tasked with the assignment to conduct research at both institutions.

News Archive

Her mission: Looking for viruses
2017-10-03

Description: Burt readmore Tags: Prof Felicity Burt, Felicity Burt, inaugural lecture, medical virology, UFS Faculty of Health Sciences, arboviruses 

Prof Felicity Burt delivering her inaugural lecture,
Catching a Virus
Photo: Stephen Collett

“Preparing and presenting an inaugural lecture is an opportunity to look back at one’s career and to enjoy previous highlights and achievements; to share these, not only with colleagues, but also with family and friends.”

This is according to Prof Felicity Burt, who recently presented her inaugural lecture, Catching a Virus. Prof Burt is a professor in medical virology in the Faculty of Health Sciences at the University of the Free State (UFS). It may sound ominous, but it is a story about identifying viruses, and finding and stopping them in their tracks in nature.

Research focus on arbo- and zoonotic viruses 
“My research focuses on arboviruses and zoonotic viruses,” said Prof Burt. “Arboviruses are viruses that are transmitted by insect vectors, such as mosquitoes, ticks, midges or sandflies, whereas zoonotic viruses are naturally transmitted from animals to humans. However, there is a considerable overlap between these two groups.” The research looks at host responses, virus discovery and surveillance in order to identify which of the viruses in circulation have the potential to cause human diseases.

“Emerging and re-emerging viruses have significant implications for public health,” said Prof Burt at the start of her lecture. She also stated that there have been disease outbreaks of unprecedented magnitude, which have spread and established in distinct geographic regions. “Many of these emerging viruses are transmitted by vectors or are spread to humans from animals. These viruses can cause significant diseases in humans,” said Prof Burt. 

There are many reasons why these viruses re-emerge, such as global warming, human invasion in forested areas, changes in agricultural practices, international travel, as well as the illegal movement of animals. Prof Burt used the Zika virus as an example of a recent emerging virus. 

More than 20 years’ experience 

With more than 20 years’ experience and a PhD in medical virology from the University of the Witwatersrand, Prof Burt is a renowned specialist. She has worked in the Special Pathogens Unit at the National Institute for Communicable Diseases, and was a member of various teams responding to outbreaks of Ebola and Rift Valley fever in Africa and Saudi Arabia, respectively. She is co-author of more than 51 articles in international scientific journals, as well as six chapters on arboviruses. In 2016, she was awarded a SARChl research chair by the South African Research Chair Initiative for her research on vector-borne and zoonotic diseases.

Click here to read the full lecture.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept