Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
18 July 2019 | Story Julian Roup | Photo Leonie Bolleurs
Clear glass
UFS researchers Lucas Erasmus (left), researcher in the UFS Department of Physics and Prof Hendrik Swart, senior professor in the UFS Department of Physics and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, with the equipment used for the ground-breaking research.

A revolutionary new type of window glass – in effect a transparent solar panel - is the objective of joint research being done by the University of the Free State (UFS) in South Africa and Ghent University in Belgium. 

A working model has been created which proves the viability of the process which now needs to be refined, made more efficient and brought to the market. It is hoped to achieve this within a decade.

This new product will have the capacity to revolutionise the generation of power cheaply from the sun to power homes, factories and cities in a new clean way.

Academics from the UFS, Prof Hendrik Swart and Lucas Erasmus are doing joint research with Ghent University in Belgium, to find solutions for energy production. 

The two universities entered into an agreement recently for this research into electricity generation. The research is driven by the UFS and was prompted by ever-rising electricity prices and growing demand for electricity production. South Africa lives with constant power outages which leaves people stuck in lifts and facing chaos on the roads as traffic lights cut out. Many people who can afford them now rely on generators.

Prof Hendrik Swart, senior professor in the Department of Physics at the University of the Free State and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, says: “An innovation like this which can help to replace traditional means of carbon based fuel for power generation in our daily lives would be hugely welcome.”

Swart explains the main objective of the research: “The idea is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted and concentrated to the sides of the glass panel where solar panels can be mounted. 

This invisible light can then be used to generate electricity to power buildings, vehicles and electronic devices. The goal is therefore to create a type of transparent solar panel.”

Swart says this technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. “The technology is also good news for the 4.7 billion cell phone users in the world, as it can be implemented in the screens of cell phones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance,” he said.

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Lucas Erasmus who is working with Prof Swart adds: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs. This will allow visible diffused light to enter housing and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and in return, reducing the cost.”

It is envisaged that the technology will take about a decade to refine and implement. This study is currently on-going, and UFS are experimenting and testing different materials in order to optimise the device in the laboratory. It then needs to be upscaled in order to test it in the field. “It is truly the technology of the future,” says 
Erasmus.

The UFS envisages that the end result of this research will provide an attractive solution to address the energy demands of buildings, electric motor vehicles and mobile electronics without affecting their appearance. 

According to Swart, the agreement entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. Lucas Erasmus, a student at the UFS, has been tasked with the assignment to conduct research at both institutions.

News Archive

SAB World of Learning Brewery bid awarded to Kovsie Brewing
2017-11-28

Description: Kovsie Brewing 2 2017 Tags: Kovsie Brewing 2 2017 

Visitors from SA Breweries (AB InBev), Khosi Mogotsi,
Patience Selesho and Zinhle Ngcobo with
Dr Jan-G Vermeulen and Dr Errol Cason from
Kovsie Brewery.
Photos: Moeketsi Mogotsi

With the recent procurement of SAB by Anheuser-Busch InBev SA/NV (AB InBev), a Belgian transnational beverage and brewing company, the 500L educational brewery located at the SAB Cyril Ramaphosa World of Learning, became available for donation. After an initial shortlisting of three universities, the SAB World of Learning Brewery was awarded to the University of the Free State (UFS) to be managed by Kovsie Brewing.

Prof Corli Witthuhn, Vice-Rector: Research at the UFS, approved the application for a micro-manufacturing liquor licence right in the middle of campus, which effectively put the UFS bid in a class of its own. It is part of her vision that entrepreneurial activities must be visible on campus”

Sixteen universities were approached to obtain the brewery for their respective campuses.

Kovsie Brewing is an initiative started by postgraduate students at the UFS Department of Microbial, Biochemical and Food Biotechnology in 2012. The main objective of this initiative was to expose BSc students to brewing as a practical application of the scientific fields presented at the department.
 

Description: Kovsie Brewing 1 2017 Tags: Kovsie Brewing 1 2017 

Label mock-ups made by
Dr Jan-G Vermeulen from
Kovsie Brewery entered into
the yearly  SAB Intervarsity
Brewing Competition. Kovsie
Brewing has won the best label
competition in 2013, 2014 and 2015
and was placed in the top three in
2016 and 2017.


First brewing and fermentation school
Dr Errol Cason, project leader at Kovsie Brewery, said: “Over the past five years the small-scale experimental brewery has steadily grown to the point where we obtained institutional support to establish the first Brewing and Fermentation School at the university.

Dr Cason explains that the primary role of Kovsie Brewing is to establish an accredited fermentation-based curriculum at the UFS to educate undergraduate and postgraduate students in the scientific process involved in the production of beer. “In addition, the donation enables Kovsie Brewing to provide practical job-related training and skills development on industrial grade equipment,” he said.

Emphasis on entrepreneurship
The secondary role is for Kovsie Brewing to function as a multi-disciplinary platform to stimulate the interaction between students from various fields of study. Currently Kovsie Brewing has well-established cooperative projects with both Marketing and Entrepreneurship programmes.

“In the future, Kovsie Brewing will expand on these multi-disciplinary interactions by incorporating other departments of the UFS with the focus on product development, logistics, as well as the legal aspects concerned with brewing,” Dr Jan-G Vermeulen from the Kovsie Brewery team said.

Corporate social investment representatives from AB InBev recently visited the university. Among others they met Drs Vermeulen and Cason. During their visit they also looked at other university projects, including the Department of Paediatric and Child Health and the Universitas Hospital, the Engineering Sciences Department and the Naval Hill Planetarium.

Khosi Mogotsi from AB InBev said: “It was wonderful to experience the passion with which UFS staff do their work.”

 

 

 

 

 

 

 

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept