Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
18 July 2019 | Story Julian Roup | Photo Leonie Bolleurs
Clear glass
UFS researchers Lucas Erasmus (left), researcher in the UFS Department of Physics and Prof Hendrik Swart, senior professor in the UFS Department of Physics and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, with the equipment used for the ground-breaking research.

A revolutionary new type of window glass – in effect a transparent solar panel - is the objective of joint research being done by the University of the Free State (UFS) in South Africa and Ghent University in Belgium. 

A working model has been created which proves the viability of the process which now needs to be refined, made more efficient and brought to the market. It is hoped to achieve this within a decade.

This new product will have the capacity to revolutionise the generation of power cheaply from the sun to power homes, factories and cities in a new clean way.

Academics from the UFS, Prof Hendrik Swart and Lucas Erasmus are doing joint research with Ghent University in Belgium, to find solutions for energy production. 

The two universities entered into an agreement recently for this research into electricity generation. The research is driven by the UFS and was prompted by ever-rising electricity prices and growing demand for electricity production. South Africa lives with constant power outages which leaves people stuck in lifts and facing chaos on the roads as traffic lights cut out. Many people who can afford them now rely on generators.

Prof Hendrik Swart, senior professor in the Department of Physics at the University of the Free State and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, says: “An innovation like this which can help to replace traditional means of carbon based fuel for power generation in our daily lives would be hugely welcome.”

Swart explains the main objective of the research: “The idea is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted and concentrated to the sides of the glass panel where solar panels can be mounted. 

This invisible light can then be used to generate electricity to power buildings, vehicles and electronic devices. The goal is therefore to create a type of transparent solar panel.”

Swart says this technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. “The technology is also good news for the 4.7 billion cell phone users in the world, as it can be implemented in the screens of cell phones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance,” he said.

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Lucas Erasmus who is working with Prof Swart adds: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs. This will allow visible diffused light to enter housing and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and in return, reducing the cost.”

It is envisaged that the technology will take about a decade to refine and implement. This study is currently on-going, and UFS are experimenting and testing different materials in order to optimise the device in the laboratory. It then needs to be upscaled in order to test it in the field. “It is truly the technology of the future,” says 
Erasmus.

The UFS envisages that the end result of this research will provide an attractive solution to address the energy demands of buildings, electric motor vehicles and mobile electronics without affecting their appearance. 

According to Swart, the agreement entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. Lucas Erasmus, a student at the UFS, has been tasked with the assignment to conduct research at both institutions.

News Archive

SRC elections: A first for UFS main campus
2005-08-14

Students on the main campus of the of the University of the Free State (UFS) will this week for the first time vote for the Student Representative Council (SRC) using two voting systems: proportional representation (PR) and first-past-the-post. 

According to the Vice-Rector, Student Affairs, Dr Ezekiel Moraka, this year’s elections are a milestone for the UFS as it will be the first time that the main campus SRC will be elected according to the amended SRC constitution, which was approved by the UFS Council in June 2005.

“It is also a major breakthrough for student governance and transformation of the UFS main campus and constitutes a legitimate basis for the democratic participation of all students at the UFS main campus in the governance of the university,” said Dr Moraka.

The amended constitution of the main campus SRC determines that nine of the 18 SRC members must be elected by means of proportional representation and nine on the basis of an individual, first-past-the-post election.
 
According to Dr Moraka, the introduction of the proportional representation system follows earlier calls by some student formations, notably Sasco and the ANC Youth League, for such a system to be introduced at the UFS main campus in Bloemfontein.

The new main campus SRC constitution is the result of consensus reached during a lengthy negotiation process involving diverse student formations such as Sasco, the ANC Youth League, the Young Communist League, the ACDP, HEREXVII, KovsieAlliance, as well as the democratically elected SRC members of the main campus.

“Independent persons such as Mr Jack Klaas and Mr Kobus van Loggerenberg, a former SRC President, facilitated the negotiation process,” said Dr Moraka.

Students on the main campus in Bloemfontein will vote for a new SRC on Monday 15 August 2005.

SRC elections will also take place on the other two campuses of the UFS, which have their own SRC structures.

Students on the UFS-Vista campus in Bloemfontein will vote for a new SRC on Monday 15 August 2005 and Tuesday 16 August 2005.

At the Qwaqwa campus of the UFS, students will vote for a new SRC on Friday 26 August 2005.

The election processes on all three campuses will be closely monitored by independent electoral bodies. 

After the three campuses have elected their respective SRCs a central SRC will be constituted.  The central SRC will have 12 members made up of delegates of the three campus SRCs, including the presidents of these three SRCs. The main campus will have five representatives, the Qwaqwa campus will have four representatives and the Vista campus will have three representatives.

Main campus voting schedule:
Monday 15 August 2005 from 07:00-21:00.  Ten voting stations will be set up across the campus.  The results will be announced on Tuesday 16 August 2005.

Vista campus voting schedule:
Monday 15 August 2005 and Tuesday 16 August 2005 from 09:00-18:00 in the administration building.  The results will be announced on Wednesday 17 August 2005.
 
Qwaqwa campus voting schedule:
Friday 26 August 2005 from 09:00-18:00 in the Senate Hall.  If there is no objection to the final results, it will be announced on the same day.


Media release

Issued by:  Lacea Loader
   Media Representative
   Tel:  (051) 401-2584
   Cell:  083 645 2454
   E-mail:  loaderl.stg@mail.uovs.ac.za

14 August 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept