Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
18 July 2019 | Story Julian Roup | Photo Leonie Bolleurs
Clear glass
UFS researchers Lucas Erasmus (left), researcher in the UFS Department of Physics and Prof Hendrik Swart, senior professor in the UFS Department of Physics and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, with the equipment used for the ground-breaking research.

A revolutionary new type of window glass – in effect a transparent solar panel - is the objective of joint research being done by the University of the Free State (UFS) in South Africa and Ghent University in Belgium. 

A working model has been created which proves the viability of the process which now needs to be refined, made more efficient and brought to the market. It is hoped to achieve this within a decade.

This new product will have the capacity to revolutionise the generation of power cheaply from the sun to power homes, factories and cities in a new clean way.

Academics from the UFS, Prof Hendrik Swart and Lucas Erasmus are doing joint research with Ghent University in Belgium, to find solutions for energy production. 

The two universities entered into an agreement recently for this research into electricity generation. The research is driven by the UFS and was prompted by ever-rising electricity prices and growing demand for electricity production. South Africa lives with constant power outages which leaves people stuck in lifts and facing chaos on the roads as traffic lights cut out. Many people who can afford them now rely on generators.

Prof Hendrik Swart, senior professor in the Department of Physics at the University of the Free State and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, says: “An innovation like this which can help to replace traditional means of carbon based fuel for power generation in our daily lives would be hugely welcome.”

Swart explains the main objective of the research: “The idea is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted and concentrated to the sides of the glass panel where solar panels can be mounted. 

This invisible light can then be used to generate electricity to power buildings, vehicles and electronic devices. The goal is therefore to create a type of transparent solar panel.”

Swart says this technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. “The technology is also good news for the 4.7 billion cell phone users in the world, as it can be implemented in the screens of cell phones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance,” he said.

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Lucas Erasmus who is working with Prof Swart adds: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs. This will allow visible diffused light to enter housing and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and in return, reducing the cost.”

It is envisaged that the technology will take about a decade to refine and implement. This study is currently on-going, and UFS are experimenting and testing different materials in order to optimise the device in the laboratory. It then needs to be upscaled in order to test it in the field. “It is truly the technology of the future,” says 
Erasmus.

The UFS envisages that the end result of this research will provide an attractive solution to address the energy demands of buildings, electric motor vehicles and mobile electronics without affecting their appearance. 

According to Swart, the agreement entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. Lucas Erasmus, a student at the UFS, has been tasked with the assignment to conduct research at both institutions.

News Archive

Stem cell research and human cloning: legal and ethical focal points
2004-07-29

   

(Summary of the inaugural lecture of Prof Hennie Oosthuizen, from the Department of Criminal and Medical Law at the Faculty of Law of the University of the Free State.)

 

In the light of stem cell research, research on embryo’s and human cloning it will be fatal for legal advisors and researchers in South Africa to ignore the benefits that new bio-medical development, through research, contain for this country.

Legal advisors across the world have various views on stem cell research and human cloning. In the USA there is no legislation that regulates stem cell research but a number of States adopted legislation that approves stem cell research. The British Parlement gave permission for research on embryonic stem cells, but determined that it must be monitored closely and the European Union is of the opinion that it will open a door for race purification and commercial exploitation of human beings.

In South Africa the Bill on National Health makes provision for therapeutical and non therapeutical research. It also makes provision for therapeutical embryonical stem cell research on fetuses, which is not older than 14 days, as well as for therapeutical cloning under certain circumstances subject to the approval of the Minister. The Bill prohibits reproductive cloning.

Research on human embrio’s is a very controversial issue, here and in the rest of the world.

Researchers believe that the use of stem cell therapy could help to side-step the rejection of newly transplanted organs and tissue and if a bank for stem cell could be built, the shortage of organs for transplants would become something of the past. Stem cells could also be used for healing of Alzheimer’s, Parkinson’s and spinal injuries.

Sources from which stem cells are obtained could also lead to further ethical issues. Stem cells are harvested from mature human cells and embryonic stem cells. Another source to be utilised is to take egg cells from the ovaries of aborted fetuses. This will be morally unacceptable for those against abortions. Linking a financial incentive to that could become more of a controversial issue because the woman’s decision to abort could be influenced. The ideal would be to rather use human fetus tissue from spontaneous abortions or extra-uterine pregnancies than induced abortions.

The potential to obtain stem cells from the blood of the umbilical cord, bone-marrow and fetus tissue and for these cells to arrange themselves is known for quite some time. Blood from the umbilical cord contains many stem cells, which is the origin of the body’s immune and blood system. It is beneficial to bank the blood of a newborn baby’s umbilical cord. Through stem cell transplants the baby or another family member’s life could be saved from future illnesses such as anemia, leukemia and metabolic storing disabilities as well as certain generic immuno disabilities.

The possibility to withdraw stem cells from human embrio’s and to grow them is more useable because it has more treatment possibilities.

With the birth of Dolly the sheep, communities strongly expressed their concern about the possibility that a new cloning technique such as the replacement of the core of a cell will be used in human reproduction. Embryonic splitting and core replacement are two well known techniques that are associated with the cloning process.

I differentiate between reproductive cloning – to create a cloned human embryo with the aim to bring about a pregnancy of a child that is identical to another individual – and therapeutically cloning – to create a cloned human embryo for research purposes and for healing human illnesses.

Worldwide people are debating whether to proceed with therapeutical cloning. There are people for and against it. The biggest ethical objection against therapeutical cloning is the termination of the development of a potential human being.

Children born from cloning will differ from each other. Factors such as the uterus environment and the environment in which the child is growing up will play a role. Cloning create unique children that will grow up to be unique individuals, just like me and you that will develop into a person, just like you and me. If we understand this scientific fact, most arguments against human cloning will disappear.

Infertility can be treated through in vitro conception. This process does not work for everyone. For some cloning is a revolutionary treatment method because it is the only method that does not require patients to produce sperm and egg cells. The same arguments that were used against in vitro conception in the past are now being used against cloning. It is years later and in vitro cloning is generally applied and accepted by society. I am of the opinion that the same will happen with regard to human cloning.

There is an argument that cloning must be prohibited because it is unsafe. Distorted ideas in this regard were proven wrong. Are these distorted ideas justified to question the safety of cloning and the cloning process you may ask. The answer, according to me, is a definite no. Human cloning does have many advantages. That includes assistance with infertility, prevention of Down Syndrome and recovery from leukemia.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept