Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
18 July 2019 | Story Julian Roup | Photo Leonie Bolleurs
Clear glass
UFS researchers Lucas Erasmus (left), researcher in the UFS Department of Physics and Prof Hendrik Swart, senior professor in the UFS Department of Physics and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, with the equipment used for the ground-breaking research.

A revolutionary new type of window glass – in effect a transparent solar panel - is the objective of joint research being done by the University of the Free State (UFS) in South Africa and Ghent University in Belgium. 

A working model has been created which proves the viability of the process which now needs to be refined, made more efficient and brought to the market. It is hoped to achieve this within a decade.

This new product will have the capacity to revolutionise the generation of power cheaply from the sun to power homes, factories and cities in a new clean way.

Academics from the UFS, Prof Hendrik Swart and Lucas Erasmus are doing joint research with Ghent University in Belgium, to find solutions for energy production. 

The two universities entered into an agreement recently for this research into electricity generation. The research is driven by the UFS and was prompted by ever-rising electricity prices and growing demand for electricity production. South Africa lives with constant power outages which leaves people stuck in lifts and facing chaos on the roads as traffic lights cut out. Many people who can afford them now rely on generators.

Prof Hendrik Swart, senior professor in the Department of Physics at the University of the Free State and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, says: “An innovation like this which can help to replace traditional means of carbon based fuel for power generation in our daily lives would be hugely welcome.”

Swart explains the main objective of the research: “The idea is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted and concentrated to the sides of the glass panel where solar panels can be mounted. 

This invisible light can then be used to generate electricity to power buildings, vehicles and electronic devices. The goal is therefore to create a type of transparent solar panel.”

Swart says this technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. “The technology is also good news for the 4.7 billion cell phone users in the world, as it can be implemented in the screens of cell phones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance,” he said.

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Lucas Erasmus who is working with Prof Swart adds: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs. This will allow visible diffused light to enter housing and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and in return, reducing the cost.”

It is envisaged that the technology will take about a decade to refine and implement. This study is currently on-going, and UFS are experimenting and testing different materials in order to optimise the device in the laboratory. It then needs to be upscaled in order to test it in the field. “It is truly the technology of the future,” says 
Erasmus.

The UFS envisages that the end result of this research will provide an attractive solution to address the energy demands of buildings, electric motor vehicles and mobile electronics without affecting their appearance. 

According to Swart, the agreement entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. Lucas Erasmus, a student at the UFS, has been tasked with the assignment to conduct research at both institutions.

News Archive

Center for Universal Access and Disability Support (CUADS) produces 22 graduates
2016-04-26

Description: Lutho Xintolo and mom Tags: Lutho Xintolo and mom

Lutho Xintolo (right) is one of the Centre for Universal Access and Disability Support 2016 graduates. She is currently pursuing her Honours in Psychology.
Photo: Supplied

Once again, the University of the Free State (UFS) hosted a successful series of graduations from 12-15 April 2016 where 3681 students were conferred qualifications at the Bloemfontein Campus. Among those graduating were 22 students who are affiliated with the university’s Center for Universal Access and Disability Support (CUADS).

Some of these students included Zingisa Ngwenya, who is currently busy with her second degree; Grant Lombaard, Zanele Morerwa, and Lutho Xintolo, all of whom are pursuing their Honours degrees. Louzanne Coetzee, a visually-impaired international champion athlete, was awarded a Communication: Corporate Marketing Honours degree this autumn. “We have five athletes and a cyclist with disabilities, amongst our students who are of world-class standard,” said Martie Miranda, Head of the Center.

The Center assists students to gain access to study courses, buildings, and lecture venues, learning material such as Braille, audio, enlarged print, and E-text, computer facilities with assistive technology and software and adapted hardware, and a specialised examination and test venue for alternative test and exam procedures,” Miranda added.

Students with disabilities who enrol with CUADS receive support according to their individual needs from registration through to graduation.  “During this process we identify challenges experienced in their administrative, academic, support, student life, and physical environments, and then address these challenges,” Miranda said.

Support provided by the Center includes amanuenses and extra time during tests and exams according to the student’s specific needs, (as determined through evaluation by the Extra Time Panel), together with Student Counselling and Development, academic tutors provided by the New Academic Tutor programme in collaboration with the UFS Centre for Teaching and Learning, and Sign Language interpreters or lip-speakers as well as real-time captioning.

Students with specific learning difficulties, mobility, visual, or hearing impairments, psychological, or other chronic conditions that might have a disabling effect on them, as well as those with temporary impairments, are fully supported by the CUADS. The Center strives to ensure that students achieve their full potential throughout their journey with our university.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept