Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
18 July 2019 | Story Julian Roup | Photo Leonie Bolleurs
Clear glass
UFS researchers Lucas Erasmus (left), researcher in the UFS Department of Physics and Prof Hendrik Swart, senior professor in the UFS Department of Physics and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, with the equipment used for the ground-breaking research.

A revolutionary new type of window glass – in effect a transparent solar panel - is the objective of joint research being done by the University of the Free State (UFS) in South Africa and Ghent University in Belgium. 

A working model has been created which proves the viability of the process which now needs to be refined, made more efficient and brought to the market. It is hoped to achieve this within a decade.

This new product will have the capacity to revolutionise the generation of power cheaply from the sun to power homes, factories and cities in a new clean way.

Academics from the UFS, Prof Hendrik Swart and Lucas Erasmus are doing joint research with Ghent University in Belgium, to find solutions for energy production. 

The two universities entered into an agreement recently for this research into electricity generation. The research is driven by the UFS and was prompted by ever-rising electricity prices and growing demand for electricity production. South Africa lives with constant power outages which leaves people stuck in lifts and facing chaos on the roads as traffic lights cut out. Many people who can afford them now rely on generators.

Prof Hendrik Swart, senior professor in the Department of Physics at the University of the Free State and SARChI chair (South African Research Chairs Initiative) in Solid State Luminescent and Advanced Materials, says: “An innovation like this which can help to replace traditional means of carbon based fuel for power generation in our daily lives would be hugely welcome.”

Swart explains the main objective of the research: “The idea is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted and concentrated to the sides of the glass panel where solar panels can be mounted. 

This invisible light can then be used to generate electricity to power buildings, vehicles and electronic devices. The goal is therefore to create a type of transparent solar panel.”

Swart says this technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. “The technology is also good news for the 4.7 billion cell phone users in the world, as it can be implemented in the screens of cell phones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance,” he said.

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Lucas Erasmus who is working with Prof Swart adds: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs. This will allow visible diffused light to enter housing and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and in return, reducing the cost.”

It is envisaged that the technology will take about a decade to refine and implement. This study is currently on-going, and UFS are experimenting and testing different materials in order to optimise the device in the laboratory. It then needs to be upscaled in order to test it in the field. “It is truly the technology of the future,” says 
Erasmus.

The UFS envisages that the end result of this research will provide an attractive solution to address the energy demands of buildings, electric motor vehicles and mobile electronics without affecting their appearance. 

According to Swart, the agreement entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. Lucas Erasmus, a student at the UFS, has been tasked with the assignment to conduct research at both institutions.

News Archive

Researcher uses NRF funding for studies to conserve plant and animal life
2017-04-18

Description: Butterfly Tags: Butterfly

It is difficult to survey all different types of
plants and animals and is therefore necessary to
choose one representative group. Butterflies are
relatively cheap and easy to sample. They are
known to be linked to specific habitats and to
respond to human pressures, such as farming.
Photo: Dr Falko Buschke


Earth is the only planet we know of that contains life. The variety of different plants and animals is remarkable: from the giant whales that swim our oceans, to the tiny mosses that grow on the shaded sides of rocks.  Many of these plants and animals are important to humans. For example, trees provide us with oxygen to breathe, bees pollinate our crops and owls control pests. More importantly though, we can tell a lot about society from the way it cares for nature. Humans are the custodians of the planet and the way we care for nature reflects the way we value life.

Dr Falko Buschke, Lecturer at the Centre for Environmental Management at the University of the Free State, is interested in understanding how the distribution of biodiversity [the variety of living things in nature] in time and space influences the way we should conserve and manage nature.

Earth is losing biodiversity faster than at any time in human history

The planet is losing biodiversity faster than at any time in human history. “There is an urgency to conserve plants and animals before they are lost forever. Nature is complex, so the way we study it should embrace this complexity. We should not rely on limited data on one type of species from one place and assume that it will also apply elsewhere. Instead, it is important that biodiversity research is comprehensive in the types of plants and animals while also considering that ecological and evolutionary processes vary through time and across geographic space,” he said.

To conduct his research, Dr Buschke uses a variety of research tools, including biological data surveyed directly from nature, spatial data from satellite remote sensing and geographic information systems databases, and data generated though custom-built computer simulations.

"There is an urgency to conserve
plants and animals before they
are lost forever."

Field work in the eastern Free State
Although parts of the eastern Free State are considered a global priority for biodiversity conservation, it is mainly privately owned commercial farmland. This means that it is important that plants and animals can survive despite living side by side with agricultural production.

“My project investigates whether the sandstone outcrops, known as inselbergs (island-mountains), are safe havens for plants and animals. Because it is difficult to survey all the different types of plants and animals, it is necessary to choose one representative group. That is where butterflies come in. Butterflies are relatively cheap and easy to sample. They are known to be linked to specific habitats and to respond to human pressures, such as farming,” he said. “Once this butterfly data is collected, it can be linked to satellite information on plant growth patterns. This will provide a clearer picture of whether plants and animals can persist side-by-side with commercial agriculture”.

Dr Buschke has just begun surveys that will carry on until the end of this year. “This 12-month project is funded under the Foundational Biodiversity Information Programme through the South African National Biodiversity Institute (SANBI) and the National Research Foundation (NRF).

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept