Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

Measures to ensure safer campuses are investigated
2010-04-16

The safety of students, lecturers and staff of the University of the Free State (UFS) is of the utmost importance for the management of this institution and deliberations are continuously taking place on what can be done to improve the levels of safety of the respective campuses in Bloemfontein and Qwaqwa.

A set of recommendations was recently tabled by our rectorate that make provision for various measures for safer campuses. According to Prof. Niel Viljoen, Vice-Rector: Operations at the UFS, attention will urgently be paid to the following recommendations:

  • The instalment of alarm systems, linked to the central security control room, in all buildings on the respective campuses.
  • The instalment of “panic systems” in strategic places in buildings.
  • Where possible, better admission control to buildings, especially office blocks.
  • Better management en integration of contracted-in security workers.
  • Enhancement/upgrading and better monitoring of the security control room and sharpening of reaction times in cases of emergency.
  • Repair and maintenance of the current border fencing.
  • A survey was once again done of all the so-called “dark spots” on campus and the instalment more effective lighting are currently in progress.
  • Safeguarding of footways and parking areas by means of cameras and panic systems that will be monitored 24 hours a day, seven days a week.
  • Better and more visible patrolling of the pedestrian walkways and campuses.

Regular and structured feedback regarding the safety situation at all campuses shall also be done.

According to Prof. Viljoen the following recommendations shall also be investigated further:

- The feasibility of the “closing” of the campus, especially in terms of transport implications, costs and effectiveness.
- The possible closing of the small pedestrian gates in order to channel pedestrian traffic through the existing and manned gates.
- The feasibility of the compulsory wearing of ID cards by all personnel, students and temporary workers.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept