Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

UFS academic appointed to prestigious academy (ASSAf)
2014-10-07

Another academic of the University of the Free State (UFS), Prof Jeanet Conradie, professor in Chemistry, was invited as newly elected member of the Academy of Science of South Africa (ASSAf).Science and research, by which new concepts are discovered, is her great passion.

Her PhD degree in Chemistry, together with also a strong background in Physics, Computer Science, Mathematics and Applied Mathematics, influenced Prof Conradie’s choice of research interest and expertise to develop gradually in the direction of computational chemistry, which is a beautiful combination of chemistry and physics.

Computational chemistry uses quantum physical principles and mathematical methods to solve chemistry problems via high-performance computerised calculations. Results obtained can be used to predict and understand the behaviour of atoms and molecules in the real world. Chemical reactions and phenomena that are impossible or too dangerous to study experimentally, can also be studied by computational chemistry. Her research team also does experimental laboratory work to combine and compare with the computational analysis. Based on these results, new materials with specific properties are developed.

The Academy of Science of South Africa (ASSAf) aspires to be the apex organisation for science and scholarship in South Africa, recognised and connected both nationally and internationally. Through its membership which represents the collective voice of the most active scholars in all fields of scholarly enquiry, ASSAf aims to generate evidence-based solutions to national problems.

Prof Corli Witthuhn: Vice-Rector: Research at the UFS said: “The UFS is very proud of Prof Conradie, who is also the first female professor in the Department of Chemistry.  Jeanet is a highly productive researcher publishing in high-impact journals.  She has extensive international networks and collaborations, increasing the impact of her work even more.  We are currently awaiting the outcome of her application for NRF rating and believe that she will receive an excellent rating.”


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept