Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

UFS Law students take on the world
2007-03-25

Back, from left: Prof. Elizabeth Snyman-Van Deventer (Associate Professor at the Department of Mercantile Law, UFS), Lucien Companie, Dee Leboela, Sunette Visser and Mr Jaco Deacon (Lecturer at the Department of Mercantile Law, UFS). Front, from left: Mr Van Aswegen (Naudes Attorneys), Prof Rita-Marie Jansen (Associate Professor at the Department of Private Law, UFS), J.C. Smith and Vicky Olivier.

Photo: Stephen Collett

A team of eight students from the Faculty of Law at the University of the Free State (UFS) will compete in an international arbitration competition in Vienna, Austria, from 30 March to 5 April 2007.

The Willem C. Vis International Commercial Arbitration Moot is an annual competition organised by the Institute of International Commercial Law at the Pace University School of Law in New York, USA. The goal of the competition is to foster the study of international commercial law and to train students in methods of alternative dispute resolution.

Students will be judged on two crucial phases: the preparation of memoranda for the claimant and respondent, and the presentation of oral arguments before an arbitral tribunal. “The Moot teaches the basic framework of international arbitration and the application of the uniform sales law to all participating students during the preparation of the memoranda and the oral arguments,” says one of the team members, Dee Leboela, who also took part in last year’s competition.

“This competition definitely prepares students for the legal practice in all facets, whether as advocate, legislator or other areas,” added Deman Smit, one of the team members who also took part last year.

This competition brings together students from a range of legal systems and cultures from all over the world to learn from the process and from each other. “This encourages the development of social competence, and lifelong skills that are needed in our profession, of which social relations play an important role,” says Leboela.

In its maiden participation last year the UFS did not disappoint, with the highest score of 49 out of 50 and the lowest being 38 out of 50. This year the UFS will compete with 178 universities from 51 countries. “With the right strategy, which involves selecting the students on academic merit and excellent advocacy skills, I believe we would make it to the top 32,” says Leboela with confidence.

The UFS team is Leboela, Smit, Lucien Companie, Vicky Olivier, Sunette Visser, Qaqamba Vellem, Hanno Bekker and Lucy Nthotso.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept