Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

Second OSM concert inspires Heidedal youth
2016-12-08

Description: OSM Heidedal concert Tags: OSM Heidedal concert 

Sehle Mosole, left, and Jonandrea Pofadder back,
with the children from the ROC Foundation during the
second OSM community outreach in Heidedal, Bloemfontein.
Photo: Supplied

“The project is special because it is an event in the community, by the community.” This is what Gerda Pretorius, lecturer in the Odeion School of Music (OSM) at the University of the Fee State, said about the second music concert hosted by the OSM in Heidedal, Bloemfontein.

The concert, in collaboration with the Reach Our Community (ROC) Foundation on 26 November 2016, was a follow-up on the concept that was started last year. As part of the outcomes of the MUSE3706 module, the third-year Music Education students engage in a project in a specific environment.  For this project the MUSE team, led by Pretorius and Anchen Froneman, collaborated with the ROC Foundation in Heidedal. Two third-year students in the OSM, Sehle Mosole and Jonandrea Pofadder, facilitated the event in 2016.

Long relationship between ROC and UFS

Since 2008, the UFS has successfully partnered with ROC through service-learning and community-engagement projects in which students from across all seven faculties participate. The foundation strives to address the challenges resulting from factors such as poverty, unemployment, HIV/Aids, single parenting, lack of guardianship, and physical and sexual abuse. In the Afterschool Care programme, the children engage in educational, cultural, and recreational activities.

Children who form part of the foundation’s Afterschool Care programme, showed their impressive music skills to their parents and guardians in attendance.

Spontaneous participation by community

“I was deeply touched by the spontaneous participation and appreciation of the community for art-related – in particular music and dance – events,” said Pretorius. A highlight was the community’s involvement in the event and the value it adds to the students’ organising skills.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept