Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept