Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
29 July 2019 | Story Leonie Bolleurs
Dr Martin Clark
Dr Martin Clark, the founder of the MAGIC (Multi-purpose Aerial Geological Image Classification) initiative. MAGIC can obtain geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes.

Mining has historically been described as a boom-and-bust industry, where fluctuations in mineral prices could result in extreme success or bankruptcy. Successful mining companies closely monitor assets/expenditures, risks, and other parameters associated with their business to best ensure their longevity. In most mineral industries, there are a few competitors that dominate the delivery of a mineral resource. As a result, technological development, along with other factors, are critical to ensure that these companies’ business remains viable and protected.

This is according to post-doctoral fellow in the Department of Geology, Dr Martin Clark.

Drone technology: better, faster, safer

He says technological development in mining generally translates to how a company can extract a resource from the ground better, faster, and safer. 

Dr Clark believes the rapid development of drone technology represents a shift in the toolbox that mining companies can employ.

“Drones can collect a great deal of data randomly over vast or small areas within hours, historically accomplished by mapping campaigns which can last months to years. Drones can also collect data in areas which are difficult and dangerous for humans to get to. These include cliff faces or rock walls that are difficult and dangerous to get close to, as well as stretches of land where dense vegetation, inaccessible terrain, and even atmospheric dangers become factors which reduce or modify the scope of exploration work,” he said. 

Expanding application of drones

Dr Clark’s work specifically focuses on expanding the applications for which drones are used. “I assess what and how good the imaging capabilities of drones are, use the imagery to generate 3-D models to drive scientific observation, and yield results which can help companies to extract resources. This initiative is called MAGIC (Multi-purpose Aerial Geological Image Classification),” he said. 



“MAGIC aims to collect geological and structural information that is critical for making informed decisions in exploration and mineral extraction processes,” he added.

Dr Clark is not only the founder of MAGIC; he also drives multiple aspects of the initiative including education, research, and business development. 

In 2013, when he was busy with his doctorate, there was already a spark of interest in using drones to address geological questions. At that time, Dr Clark was working with remotely sensed high-resolution LiDAR imagery to better understand geological structures at the Sudbury Mining Camp in Canada. The interest became a reality in 2018, when he applied this initiative during his post-doctoral fellowship at the UFS.

Now and the future

“At present, there are no direct mining projects underway, but projects are expected to begin in 2020. Drone operation and image-analysis techniques are currently being refined for industry,” he said. 

Besides his work with drones, Dr Clark also work in the fields of structural geology, remote sensing, and geospatial data analysis.  

News Archive

Boyden observatory celebrates its achievements
2004-10-05

The red carpet will be rolled out and champagne glasses filled tonight when the Boyden Observatory outside Bloemfontein will launch the first phase of the new science centre.

This phase, which was completed earlier this year, consists of a new auditorium, reception area and paths which connect educational visiting points on the Boyden terrain.

“Over the past two years the Boyden Observatory has been re-sited as a research, educational and public facility. The new facilities are now being utilised for educational and public programmes. The 1,5m Boyden telescope has also recently been upgraded and is used for research purposes,” says Dr Matie Hoffman from the University of the Free State’s (UFS) Department of Physics, who is responsible for the management of the centre.

“The Boyden Observatory is a unique facility of the UFS - we are one of the few universities in the world who has its own observatory,” says Dr Hoffman.

“The main purpose of the science centre is to create enthusiasm for science amongst the public. The centre also has a great educational function and focuses specifically on the improvement of the quality of science education in the Free State,” says Dr Hoffman.

Fund-raising for the planned second phase of the science centre, which will consist of interactive in- and outside exhibition areas, will also start tonight. “After the completion of the second phase the Boyden Observatory will probably become the most accessible and public-friendly observatory in the country and a great asset for the Free State Province,” says Dr Hoffman.

A small robotic telescope, which will be controlled from the University College Dublin in Ireland, will also be installed at the Boyden Observatory this year.

“Just as this year is a significant one for the UFS with its centenary celebrations, so it is also a significant one for the Boyden Observatory. The Harvard University in the United States of America started with the construction of the original 1,5 m telescope in its original form 100 years ago, the telescope was put in place at Boyden 70 years ago and Mr Uriah Boyden – the person who donated the money with which the Boyden Observatory was constructed, was born 200 years ago,” says Dr Hoffman.

The first phase of the science centre was built with funds sponsored by the AngloGold Fund, the Shuttleworth Foundation, the Charl van der Merwe Trust and the Lila Theron Trust. Donations from the Friends of Boyden Observatory and other individuals also contributed to the success of the project.

Those who are interested in educational tours of the science centre can contact Dr Hoffman at (051) 401-2322.

Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
5 October 2004

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept