Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
18 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Christine Engelbrecht from the Agricultural Research Council
Dr Christine Engelbrecht from the Agricultural Research Council presented the keynote lecture on climate dynamics, predicting that El Niños will double in frequency towards the end of the century.

The world will need nearly double the current food supply by 2050 to feed an ever-increasing world population. This is a mammoth, almost impossible task.

Building on knowledge

According to UFS Rector and Vice-Chancellor, Prof Francis Petersen, if we approach challenges such as these with scientific level-headedness, systematically build on knowledge and experience gained, and draw on similar inputs from other specialist fields, the seemingly impossible becomes possible.

“To what extent do we integrate our knowledge across sectors – within the university and outside the university; on the continent as well as globally?” he asked the 300-plus delegates, which included animal scientists, students, and various other role players in the livestock sector, at the 51st South African Society of Animal Science (SASAS) congress on the Bloemfontein Campus of the University of the Free State (UFS). 

Willingness to adapt to new strategies


The theme of this year’s congress was: Managing the ecological footprint of livestock through efficient production. The congress provided a platform for discussions on the impact of livestock production – bringing in elements of critical thinking, as well as the willingness to adopt new strategies. 

During the congress, workshops on topics such as silage, predation management, intensive sheep production, prickly-pear utilisation, and animal welfare provided delegates with the opportunity to discuss challenges faced by the South African livestock producer.

Dr Christine Engelbrecht (Meteorology) from the Agricultural Research Council presented the first keynote address, focusing on climate dynamics. 

“We have high-impact weather systems across Southern Africa. It is projected that strong El Niños are to double in frequency towards the end of the 21st century,” said Dr Engelbrecht. 

She further predicted temperature increases of between 4 and 7 degrees Celsius in the interior before the end of the century. Over the Free State, Northern Cape, and North-West Province, we can expect shorter frost seasons, significant increases in maximum temperatures for both summer and winter, as well as more frequent El Niño-induced droughts. 

Ecological footprint of food

Improved production outputs need to be achieved by using less land, water, and available energy, while ensuring that the degradation and pollution of natural resources are limited. A scientific approach would be a viable option to improve the efficiency of livestock production.

SASAS President, Prof Este van Marle-Köster from the University of Pretoria, pointed out that all food had an ecological impact.

Dr Frikkie Maré, Head of the Department of Agricultural Economics at the UFS, presented a keynote lecture on managing the footprint of beef through efficient production. Comparing the water footprint of different cattle breeds, his question was what could be done to reduce this. 

Animal welfare was introduced to the congress for the first time. Prof Cathy Dwyer from Scotland’s Rural College presented a session on, ‘Can animal welfare contribute to improved production efficiency?’

The oldest conception of animal welfare is the five freedoms adapted to the five welfare needs of animals, namely a suitable environment, a suitable diet, exhibiting normal behaviour patterns, being with or being apart from other animals, and protection from pain, injury, suffering, and disease. Studies demonstrate that animal welfare can be an important and effective part of production efficiency, and that animal welfare should be seen as an integral component of improving the sustainability of livestock. 

Prof HO de Waal from the Predation Management Centre at the UFS presented a session on the impact of predation on livestock production, with the tile: The need for coordinated predation management in South Africa – quo vadis? He said: “The current approach to predation management is fragmented and uncoordinated. Solutions for the management of human-wildlife conflict require a South African institutional memory. Most of the information on predation and the hunting of predators is held by specialist predator hunters and farmers. In a system of coordinated predation management, farmers and government are equal partners, each with specific responsibilities.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept