Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

dti announces nominees for 2008 Science and Technology Awards
2008-10-03

 

At the announcement of the nominees for the 2008 dti Technology Awards were, from the left: Prof. Schalk Louw, Department of Zoology and Entomology, Mr Sipho Zikode, Deputy Director General at the Department of Trade and Industry (dti), Dr Romilla Maharaj, Executive Director: Human and Institutional Capacity Development at the National Research Foundation (NRF), and Mr Ephraim Baloyi, Director: Innovation and Technology at the dti.

Mr Michael Chung, master’s student in Plant Pathology, explaining some of the research conducted in the Centre for Plant Health Management (Cephma).

Prof. Schalk Louw, Department of Zoology and Entomology, and Mr Ephraim Baloyi, Director: Innovation and Technology at the dti in the Cephma laboratory.

   
dti announces nominees for 2008 Science and Technology Awards

The Department of Trade and Industry’s (dti) Deputy Director-General, Mr Sipho Zikode, yesterday announced the nominees for the 2008 dti Technology Awards which will take place on 30 and 31 October in Bloemfontein.

The purpose of these annual awards is to recognise those researchers, private institutions and students who performed well in terms of innovation and technology development, says Mr Ephraim Baloyi, Director: Innovation and Technology at the dti.

The awards are a combination of the Annual Awards of the different dti programmes supporting technology in industry. They are the Technology and Human Resources for Industry Programme (THRIP), administered by the National Research Foundation (NRF), the Support Programme for Industrial Innovation (SPII), administered by the Industrial Development Corporation, and seda Technology Programme (stp), administered by the Small Enterprise Development Agency.

The dti delegation also visited the laboratory of Prof. Schalk Louw of the UFS to view the work of this former dti Technology Awards recipient. Prof. Louw is a member of the UFS Centre for Plant Health Management (Cephma) team that won a 2007 Technology Award for groundbreaking research work on kenaf (a South African commercial fibre crop used, amongst others, in the automotive industry). The research of the Cephma team is supported by the NRF’s THRIP programme.

The awards are hosted in a different province each year to increase awareness around the dti’s technology support for researchers, small enterprises, large industries and business incubators.

Media Release
Issued by: Leonie Bolleurs
Tel: 051 401 2707
Cell: 083 645 5853
3 October 2008

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept