Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

Significant boost for infrastructure development
2012-12-28

The University of the Free State (UFS) recently received a significant boost for its infrastructure development with the approval of infrastructure projects totalling
R333,600 million by the Department of Higher Education and Training for the next three years.

The funding includes cost sharing, with the department contributing R208,394 million and the UFS contributing an amount of R125,206 million.

The UFS Council approved the projects and the cost sharing during the last meeting for the year on 16 November 2012.

“We are elated by the generous funding received from the department as it will assist us in fast-tracking our infrastructure development, providing in the increasing need for new and upgraded facilities at all three campuses,” said Prof. Nicky Morgan, Vice-Rector: Operations.

The projects include:

  • Upgrading and new disability access to various buildings on the Bloemfontein, South and Qwaqwa Campuses;
  • A building in Kimberley, which will be shared by the School for Allied Health Professionals and Nursing;
  • Upgrading and extension of the biotechnology and nutrition facilities, additional infrastructure for the Department of Physics and the upgrading of an extension to the genetic sciences facilities on the Bloemfontein Campus;
  • A new 250-bed student residence on the Bloemfontein and Qwaqwa Campusus, respectively;
  • Facilities for the Faculty of Education;
  • Six lecture rooms on the South Campus;
  • Upgrading of the interpreting laboratory and the development of an audio-visual production facility for recording of lectures on the Bloemfontein Campus;
  • Provision of office space for the Centre for Teaching and Learning on the Bloemfontein Campus;
  • Lecture halls and a laboratory for the Department of Geography and Tourism on the Qwaqwa Campus; and
  • Funding of additional infrastructure for the Department of Physics on the Qwaqwa Campus.

 “The department made special mention of the way the UFS manages its infrastructure and efficiency funding when the announcement about the allocation of funds was made. This is a feather in our cap as the department has been referring other higher education institutions to the UFS for advice on infrastructure development,” he said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept