Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

New digital planetarium first of its kind for Sub-Saharan Africa
2013-10-10

Mr Andrew Johnson, Sky-Skan engineer, explains how the dataprojector of the new digital planetarium functions.
10 October 2013

The University of the Free State (UFS) is the first in the world to boast a modern digital planetarium which was erected within an existing observatory.

It is also the first planetarium of its kind for Sub-Saharan Africa.

“What makes the project unique is the fact that we convert the existing observatory structure into a modern digital planetarium. It hasn’t been done anywhere else,” says Andrew Johnson, engineer at Sky-Skan, the company supplying the equipment and also installing it.

Andrew has worked on similar projects, with his company installing digital planetariums around the world.

What makes the planetarium so special is the fact that it offers visitors an inclusive experience.

“Previously visitors could only watch projected stars and constellations, but with the digital planetarium they can now experience a journey through space which feels very close to reality.”

Andrew points out that, apart from stargazing and travelling through space, the digital planetarium allows the audience to visit planets, explore the secrets of the oceans or even organs in the human body.

The planetarium will also be used for concerts, state-of-the-art presentations, theatre productions, as well as meetings, conferences and exhibitions.

The auditorium can seat approximately 90 adults or 120 children.

The digital dome that was recently fitted into the existing observatory structure, is a 12-metre seamless aluminium screen complemented by a powerful surround-sound system and multiple data projectors from Sky-Skan. This results in an immersive experience of the digital universe, as well as the recreation of the macro and micro cosmos an a variety of other environments.

The planetarium will be officially opened on Friday 1 November 2013 by Derek Hanekom, Minister of Science and Technology. Prof Matie Hoffman from the Department of Physics at the UFS is delighted at this visit from Minister Hanekom.

“This recognition and national interest demonstrates the importance and contribution of the first digital planetarium in Sub-Saharan Africa to science and astronomy.  It is also evidence that a facility like this is important for the training of the next generation of scientists.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept