Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

Deputy Minister leads a space science outreach programme in Bloemfontein
2014-02-28

The Deputy Minister of Science and Technology, Michael Masutha and Mandla Maseko– the first black South African expected to go into space in 2015 – will participate in a Space Science Outreach Programme at the University of the Free State on Saturday 1 March 2014.

The event, taking place at the Bloemfontein Campus, is part of an outreach programme to raise awareness about South Africa’s advances in space science and technology and its benefits to society.

Mr Maseko will share his exciting experiences in the Axe Apollo Space Academy competition, a challenging event that included skydiving, aptitude tests and building and launching a rocket with about 600 learners from the surrounding areas. The 25-year-old from Mabopane near Pretoria will become the first black astronaut when he goes into space on the Lynx Mark II Shuttle, next year.

The outreach event will include activities such as telescope making and rocket launching. Workshops demonstrating the benefits of space science in areas such as earth observations, scientific research and development and human capital development, will also be conducted.

Among others, the open day will feature exhibitions such as the project to build the world’s largest telescope, the Square Kilometre Array and the recent launch into space of the country’s micro-satellite – ZACUBE1 built by post-graduate students at the Cape Peninsula University of Technology (CPUT).

Other exhibitors will include the Hartebeesthoek Radio Astronomy Observatory (HartRAO), the Agricultural Research Council, Denel Dynamics, the South African National Space Agency (SANSA) and the South African Weather Services (SAWS).

Officials from the provincial Department of Basic Education are also expected to attend.

Journalists are invited to the outreach

Venue: Economics Building, University of the Free State
Date: Saturday 1 March 2014
Time: 08:00

For more information, contact Veronica Mohapeloa at +27(0)82 882 3818 or +27(0)12 843 6788 or email veronica.mohapeloa@dst.gov.za OR David Mandaha at +27(0)72 126 8910 or david.mandaha@dst.gov.za

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept