Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

A call for next generation of professors: Apply for the Vice-Chancellor’s Prestige Scholars’ Programme
2014-12-19

 

Examples of the rector's prestige scholars' international footprint: Dr Olihile Sebolai, Fulbright scholar (left) returned to the UFS after six months at the University of Birmingham and three at the University of Missouri. Dr Cilliers van den Berg (right) visited Cornell University on a ten-month sabbatical.

The Vice-Chancellor’s Prestige Scholars’ Programme (PSP) seeks to identify, develop and promote the next cohort of the most promising and talented UFS academic members of staff who obtained a doctoral degree within the last five years or will graduate by June 2015.

Scholars identified benefit from an intensive programme of academic and professional support that includes an advanced residential programme, exposure to leading scholars, concentrated reading and writing programmes, high-level seminar participation and presentation, nuanced publication schedules and personal mentoring and advice, including participation in the annual PSP mock NRF rating and the development of a postdoctoral intellectual project for funding submission (Thuthuka, and similar).

Past prestige scholars have become Fulbright scholars, received funding from among others the Association of Commonwealth Universities, the Japan Society for the Promotion of Science, Erasmus Mundus, NRF Blue Skies, Thuthuka, etc. They have spent time at universities in Canada, the USA, United Kingdom, Europe and Japan.

This year the selection process will be anticipated by pre-selection. Final selection to the programme will take place in September 2015. The selection is highly competitive, and aimed at those young scholars with the potential to obtain upper-level NRF ratings (Y1 and P).

Criteria for selection:

Recently obtained a PhD degree. 
Evidence of an active publication record. 
Early recognition of scholarly work, e.g. successful funding/grant applications and academic awards. 
The early development of a post-doctoral intellectual project that shows evidence of scholarly “potential” (defined by the NRF Y-category). 
Indication of the young scholar’s understanding of what their envisaged postdoctoral endeavours will contribute to the body of disciplinary knowledge. 
Full participation in the pre-selection residential programme and activities is a requirement for selection.

Call for interest: 2015 (PDF)

Requests for further information can be directed to Prof Jackie du Toit at dutoitjs@ufs.ac.za.

Applications close on 16 February 2015.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept