Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

Moving towards creating a more accessible UFS for mobility-impaired students
2015-07-21


Centre for Universal Access and Disability Support’s logo for persons with mobility impairments.
Design: Karoo Republic


Hi, my name is Jackson, and I am a wheelchair user following an accident that left me paralysed.

We often take for granted the ability to navigate obstacles, and to move readily from place to place. Few people have to worry about mobility on campus, but for students with mobility impairments, it presents many challenges that few of us are aware of.

 

The biggest struggle for students with mobility impairments is often encountered in the lecture room/hall. Once they arrive at the class (often struggling to get there on time), their next challenge might be entering the classroom and finding a suitable place where they can sit comfortably. As it is, there are only a few loose tables in most lecture halls. Consequently, the students have to sit through the lecture taking notes and working with their laptops resting on their laps. Obviously, this is uncomfortable and not conducive to their learning process.

 

When students have limited hand function, the result is that they write more slowly and with difficulty. However, the UFS does offer assistance from scribes, adapted computer hardware/software, assistive devices, and/or modified furniture. Such adaptations can be arranged by the Centre for Universal Access and Disability Support (CUADS), which boasts an official test and examination venue where students with mobility impairments can proceed with their tests and exams if they prefer.

 

Students with Cerebral Palsy may experience difficulties with quick, sudden physical movements, and delayed processing of information. Stressful circumstances can result in their experiencing difficulty when having to write or process information quickly enough during test and examination situations. The Extra Time Panel, in collaboration with Student Counselling and Development, determines the time concession for those students with mobility impairments who have such needs.  

 

The importance of accessible parking spaces exclusively designated for wheelchair users not only involves such places being closer to a building entrance but also wide enough for a wheelchair user to get in and out of a vehicle safely.

?

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept