Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

Otorhinolaryngology research hopes to decrease morbidity
2016-10-04

Description: Prof Riaz Seedat Tags: Prof Riaz Seedat

Prof Riaz Seedat, Head of the
Department of
Otorhinolaryngology at the UFS

Prof Riaz Seedat, Head of the Department of Otorhinolaryngology at the UFS is a world-renowned ear, nose and throat specialist and researcher. He is also a National Research Foundation C3 rated scientist.

He is conducting his research in ear, nose and throat (ENT) pathology in a developing world setting, particularly focusing on recurrent respiratory papillomatosis and other ENT conditions. “This condition is caused by human papillomavirus (HPV), infective conditions as well as allergic rhinitis,” said Prof Seedat.

Current research is aimed at further describing the epidemiology of recurrent respiratory papillomatosis, identification of the HPV variants responsible for causing the condition and markers of disease aggressiveness.

The research has led to various international partnerships such as the multicentre collaborative studies, “Genetic Susceptibility to Papilloma-induced Voice Disturbance” at the Centre for Genomic Sciences at the Allegheny-Singer Research Institute in Pittsburgh, United States, and the HPV6/11 Global Diversity Consortium at the University of Ljubljana in Slovenia.

Although most head and neck squamous cell carcinomas are caused by excessive tobacco and alcohol use, there is an increasing body of evidence to show that HPV causes a subset of head and neck squamous cell carcinomas. However, there are few studies on the role of HPV in head and neck neoplasms in developing countries.

“Through the research we have shown that recurrent respiratory papillomatosis, caused by HPV, is not as rare in South Africa as it is in developed countries and that patients usually present respiratory papillomatosis at an advanced stage when the condition is life-threatening,” said Prof Seedat.

“It is hoped that this research will help us to address the morbidity caused by ENT conditions common in developing countries,” said Prof Seedat.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept