Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
05 June 2019 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Lucas Erasmus and Prof Hendrik Swart
Lucas Erasmus and Prof Hendrik Swart (right) are working on a joint project with Ghent University to find an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics.

With a constant increase in the price of electricity, any innovation to replace this necessity in our daily lives is welcome. 

The University of the Free State (UFS), whose vision is supported by an element of innovation, welcomes the recent agreement between its Department of Physics and Ghent University.

Attractive solution


Not only will this research – which aims to develop the materials necessary for transparent solar panels – enlarge the international research footprint of the UFS, but it is also an attractive solution to address the energy demands of buildings, electric motor vehicles, and mobile electronics without affecting their appearance.

According to Prof Hendrik Swart, from the UFS Department of Physics, the agreement between the two universities entails a joint doctoral degree in which both universities will supervise the project and the awarding of the doctorate. The student, Lucas Erasmus, will conduct research at both institutions.

Transparent solar panel

The idea with the research is to develop glass that is transparent to visible light, just like the glass you find in the windows of buildings, motor vehicles, and mobile electronic devices. However, by incorporating the right phosphor materials inside the glass, the light from the sun that is invisible to the human eye (ultraviolet and infrared light) can be collected, converted, and concentrated to the sides of the glass panel where solar panels can be mounted. This invisible light can then be used to generate electricity to power these buildings, vehicles, and electronic devices. The invention is therefore a type of transparent solar panel.

Implemented in cellphone screens

This technology can be implemented in the building environment to meet the energy demands of the people inside the buildings. 

The technology is also good news for the 4,7 billion cellphone users in the world, as it can be implemented in the screens of cellphones, where the sun or the ambient light of a room can be used to power the device without affecting its appearance. 

Another possible application is in electric cars, where the windows can be used to help power the vehicle.

Low-income housing

Erasmus added: “We are also looking at implementing this idea into hard, durable plastics that can act as a replacement for zinc roofs.” 

“This will allow visible light to enter housing, and the invisible light can then be used to generate electricity. The device also concentrates the light from a large area to the small area on the sides where the solar panels are placed; therefore, reducing the number of solar panels needed and, in return, reducing the cost.”

The technology will take about a decade to implement.

“This study is currently ongoing, and we are experimenting and testing different materials in order to optimise the device in the laboratory. After this, it needs to be upscaled in order to test it in the field. It is truly the technology of the future,” said Erasmus.

Video: Barend Nagel

News Archive

UFS has a contingency plan for load shedding
2008-02-13


The University of the Free State (UFS) has put in place a contingency plan to ensure that there is minimal disruption to the normal academic operations of its Main Campus in Bloemfontein whenever load shedding occurs.

The plan includes alternative arrangements for certain lectures that fall within the load-shedding schedule provided by Centlec, the emergency power generation for certain lecture halls and buildings, as well as the functioning of the UFS Sasol Library. This is in addition to emergency power equipment that has already been ordered for the larger lecture-hall complexes.

Fortunately, the Qwaqwa Campus has adequate emergency power generation capacity. The situation on the Vista Campus in Bloemfontein is being monitored, but the same guidelines will apply as on the Main Campus.

On the Main Campus in Bloemfontein the following alternative arrangements regarding the timetable for evening classes will come into effect when load shedding occurs:

  • An alternative module and venue timetable has been compiled so that classes that cannot take place on weekdays as a result of load shedding can be accommodated on Fridays and Saturdays.
  • Classes that are presented in the timeslot 18:10 to 21:00 on Thursdays are alternatively accommodated in the same venues at the same times on a Friday.
  • Classes that take place in the timeslot 20:10 to 22:00 on Wednesdays are alternatively accommodated in the timeslot 08:10 to 12:00 on Saturdays, in a few cases in different venues from those scheduled initially.
  • After consultation with students, lecturers will decide whether the alternative timetable will apply when load shedding does indeed occur or whether the alternative timetable will be a permanent arrangement.

Some other steps that have been taken regarding the functioning of lecture halls include:

  • The design and installation of emergency power equipment in all the large lecture-hall complexes within the next few months. This includes the Examination Centre, Flippie Groenewoud Building, the Stabilis and Genmin lecture halls.
  • The ordering of a larger generator for the Agriculture Building to simultaneously provide essential research equipment such as refrigerators, ovens and glasshouses with emergency power.
  • An investigation into the optimal utilisation of present emergency power installations.
    The purchasing of loose standing equipment such as battery lights, uninterruptible power supplies, loose-standing generators, etc.

The UFS Sasol Library will continue as normal as far as possible though there may be some minor changes as a result of load shedding. The library has an emergency generator that will be used in the event of load shedding to allow students and other users to exit the library. If load shedding occurs during daylight hours, the library will remain open with limited services. If the load shedding occurs after 6 pm (18:00), all users will be allowed to exit and the library will remain closed until the next day.

A comprehensive investigation into the university’s preparedness for and management of long term power interruptions is also receiving attention.

More information on the contingency plan for load shedding can be obtained from the UFS website at www.ufs.ac.za/loadshedding.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 February 2008


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept