Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
19 March 2019 | Story Dr Cinde Greyling
Dr Mutana and Prof Mukwada
Many people enjoy spending time in the mountainous Drakensberg region. Prof Geofrey Mukwada’s involvement with the UFS Afromontane Research Unit (ARU) sparked an interest in sustainable tourism in the area. Pictured here are Dr Sarudzai Mutana with Prof Mukwada.

Not only is the Qwaqwa Campus situated in a beautiful region – its researchers also contribute to keeping the area pristine. Recent research by Prof Geofrey Mukwada and his PhD student, Dr Sarudzai Mutana, focused on indicators monitoring sustainable tourism development in the Drakensberg region.

Dr Mukwada is an Associate Professor in the Department of Geography on the University of the Free State (UFS) Qwaqwa Campus. 

Our majestic mountains are fragile

Many people enjoy spending time in the mountainous Drakensberg region – either as adventure seekers exploring the many trails, or just relaxing and reconnecting with nature. Prof Mukwada’s involvement with the UFS Afromontane Research Unit (ARU) sparked an interest in sustainable tourism in the area. “Mountains are fragile but attractive environments which continue to attract tourists,” he said. “Tourism is one of the major business sectors in the Drakensberg region, with promising growth opportunities and proving to be an anchor of green economy in the future – if practiced correctly.” Unfortunately, the issue of monitoring sustainable tourism has not been widely researched in African mountains. 

According to international standards

“We specifically looked at the Global Sustainable Tourism Criteria (GSTC), which is an international best-practice framework to help destinations monitor and ensure that tourism is developed in a responsible manner,” Prof Mukwada explained. “South Africa’s Manual for Responsible Tourism was designed according to some of the recommendations of the GSTC. But we found that, while the tourism and hospitality operators in the Drakensberg region appreciates the need to monitor and ensure sustainable tourism in the area, there is limited use of indicators as a tool for monitoring.” 

Forward together

There are competing demands between land-use and development practices and alternatives in the region – unless the focus shifts to sustainable practices, the short-term gains could be followed by dire consequences. “We suggest an integrated monitoring of tourism development, with a pro-poor focus that involves more local community leaders. Going forward, we would like to see the industry adopt the indicators proposed in our study.”

News Archive

Extending new discoveries in the deep subsurface – UFS paper published in Nature Communications
2015-11-30



Scanning electron microscopy of some of the Eukarya recovered from two different mines. (a) Dochmiotrema sp. (Plathyelminthes), (b) A. hemprichi (Annelida), (c) Mylonchulus brachyurus (Nematoda), (d) Amphiascoides (Arthropoda). Scale bar, 50 µm (a,b), 100 µm (c), 20 µm (d).

Following the discovery of the first Eukarya in the deep subsurface (Nature, 2010) by a research group from the Department of Microbial, Biochemical, and Food Biotechnology at the University of the Free State (UFS) and their international collaborators, intense interest has developed in understanding the diversity of more complex organisms living in these extreme environments.

Prof Gaetan Borgonie from Extreme Life Isyensya, together with a group of UFS researchers, took this research further, resulting in a paper on this research released in Nature Communications – impact factor 11.47.  This paper is an extension of the first reports of more complex life at great depths, and their abilities to survive these harsh conditions.

Ten authors from the UFS contributed with the array of expertise needed to define this discovery. The group was supported by staff from the different mining groups, long-term leading collaborators from the USA and Canada, and the idea specialist driver of the paper, Prof Borganie.

“After a sampling campaign that lasted more than two years, we identified that Platyhelminthes, Rotifera, Annelida and Arthropoda are thriving at 1.4 km depths in fissure water up to 12,000-years old in the South African mines of Driefontein and Kopanang,” said Prof Borgonie, who was appointed as associated researcher in the Department of Microbial, Biochemical, and Food Biotechnology.

This paper really opens a “can of worms” so to speak. According to Prof Esta van Heerden from the Department of Microbial, Biochemical and Food Biotechnology at the UFS they extended to define protozoa and fungi. “However, they are present in low numbers,” she said.

Characterisation of the different species reveals that many are opportunistic organisms. In house-adapted video equipment was used to film inside the fissure for the home of the organisms.

This is the first-known study to demonstrate the in situ distribution of biofilms on fissure rock faces using video documentation. Calculations suggest that food, not dissolved oxygen, is the limiting factor for population growth. The discovery of a group of complex multicellular organisms in the underground has important implications for the search for life on other planets in our solar system.

More articles

The strange beasts that live in solid rock deep underground
A microscopic ‘zoo’ is found deep, deep underground

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept