Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
11 October 2019 | Story Leonie Bolleurs | Photo Supplied
Staff and Students from the Department of Physics
Staff and students from the UFS Department of Physics with parts of the newly arrived astronomical spectrograph for the Boyden Observatory 1,5-m telescope. From the left, are: Dr Pat van Heerden, Daniel Kulik (honours student), Joleen Els (third-year student), Justin Cooper (honours student), Helene Szegedi (lecturer), Professor Petrus Meintjes, Dr Brian van Soelen, and Dr Richard Gray.

Stable atmospheric environments and near perfect weather conditions were the main reasons for the establishment of the Boyden Observatory a few kilometres outside Bloemfontein. This astronomical research observatory and science education centre is managed by the Department of Physics at the University of the Free State (UFS).

With the newly acquired astronomical spectrograph for the Boyden Observatory 1,5-m telescope, scientists will be able to gain visual access to both the Northern and Southern Hemisphere skies.

Collaboration with expert in stellar spectroscopy 


The spectrograph, mainly developed and built by Dr Richard Gray, will be used collaboratively for astronomical research by the UFS and the Appalachian State University (ASU) in North Carolina, where Dr Gray is based. 

Dr Gray is a world-renowned expert in stellar spectroscopy and leading author of one of the most influential textbooks on stellar spectroscopy, Stellar Spectral Classification, with co-author Christopher J Corbally.

Dr Gray recently received a Fulbright Scholarship from the Fulbright Foundation to spend a full year in the UFS Department of Physics, where he will lecture several Astronomy classes and do research in collaboration with personnel of the UFS Astrophysics Research Group. He will also lead the assembly of the instrument over the next few weeks, working with personnel and students in the Department of Physics as well as the UFS Instrumentation Division.

According to Prof Pieter Meintjes, Senior Professor from the UFS Department of Physics, some components of the instrument have been developed and constructed by the university’s Instrumentation Division, with key components purchased from funding by the Directorate: Research Development at the UFS.

Unique capability in infrastructure 

“The availability of a sophisticated instrument of this nature on the 1,5-m telescope will place the UFS Astrophysics Group in an elite bracket in terms of the available infrastructure for astronomical research,” said Prof Meintjes.

He explained: “The combined polarimetric-spectroscopic capability in one single instrument is unique. Combined with the fact that it is hosted on a research instrument that is utilised and maintained exclusively by the UFS Astronomy Group in the Department of Physics, gives this group a competitive edge in relation to most international astronomy groups.” 

The instrument is valued at close to R1,5 million. 

The Boyden Observatory
The Boyden Observatory. (Photo:Supplied)

According to Prof Meintjes, the instrument will be mounted at the backend of the UFS Boyden 1,5-m telescope and will allow them to do simultaneous polarimetry and spectroscopy of astronomical sources. “This is vital for the research we are working on,” he said.

International collaboration and student development

The instrument also brings with it the possibility of forging international collaborations for research as well as student development. “This can advance the stature of the UFS as an internationally respected research-led tertiary institution,” said Prof Meintjes. 

The possibility of making the UFS Boyden 1,5-m telescope completely remote-controlled, is being investigated. “This will serve the observational needs of researchers from both the UFS and the ASU, with researchers at ASU able to access the telescope for their own in-house research programmes. The availability of such an instrument on the UFS 1,5-m telescope also opens up the possibility to accommodate visiting researchers from ASU or elsewhere in the world at Boyden,” said Prof Meintjes.

News Archive

#Women'sMonth: Save the children
2017-08-10

Description: Trudi O'Neill Tags: : rotaviruses, young children, Dr Trudi O’Neill, Department of Microbial, Biochemical and Food Biotechnology, vaccine 

Dr Trudi O’Neill, Senior lecturer in the Department of
Microbial, Biochemical and Food Biotechnology.
Photo: Anja Aucamp

Dr Trudi O’Neill, Senior lecturer in the Department of Microbial, Biochemical and Food Biotechnology, is conducting research on rotavirus vaccines.

Dr O’Neill was inspired to conduct research on this issue through her fascination with the virus. “The biology of rotaviruses, especially the genome structure and the virus’ interaction with the host, is fascinating.”

“In fact, it is estimated that, globally, ALL children will be infected with rotavirus before the age of five, irrespective of their socio-economic standing. However, infants and young children in poor countries are more vulnerable due to inadequate healthcare. The WHO estimates that approximately 215 000 deaths occur each year. This roughly equates to eight Airbus A380 planes, the largest commercial carrier with a capacity of approximately 500 seats, filled with only children under the age of five, crashing each week of every year.”

Alternative to expensive medicines 
“Currently, there are two vaccines that have been licensed for global use. However, these vaccines are expensive and poor countries, where the need is the greatest, are struggling to introduce them sustainably. It is therefore appealing to study rotaviruses, as it is scientifically challenging, but could at the same time have an impact on child health,” Dr O’Neill said.

The main focus of Dr O’Neill’s research is to develop a more affordable vaccine that can promote child vaccination in countries/areas that cannot afford the current vaccines.

All about a different approach 

When asked about the most profound finding of her research, Dr O’Neill responded: “It is not so much a finding, but rather the approach. My rotavirus research group is making use of yeast as vehicle to produce a sub-unit vaccine. These microbes are attractive, as they are relatively easy to manipulate and cheap to cultivate. Downstream production costs can therefore be reduced. The system we use was developed by my colleagues, Profs Koos Albertyn and Martie Smit, and allows for the potential use of any yeast. This enables us to screen a vast number of yeasts in order to identify the best yeast producer.”

Vaccination recently acquired a bad name in the media for its adverse side effects. As researcher, Dr O’Neill has this to say: “Vaccines save lives. By vaccinating your child, you don’t just protect your own child from a potentially deadly infection, but also other children in your community that might be too young to be vaccinated or have pre-existing health problems that prevents vaccination.” 

A future without rotavirus vaccination?

Dr O’Neill believes a future without rotavirus vaccination will be a major step backwards, as the impact of rotavirus vaccines has been profound. “Studies in Mexico and Malawi actually show a reduction in deaths. A colleague in Mozambique has commented on the empty hospital beds that amazed both clinicians and scientists only one year after the introduction of the vaccine in that country. Although many parents, mostly in developed countries, don’t have to fear dehydrating diarrhoea and potential hospitalisation of their babies due to rotavirus infection anymore, such an infection could still be a death sentence in countries that have not been able to introduce the vaccine in their national vaccination programmes,” she said. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept