Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
11 October 2019 | Story Leonie Bolleurs | Photo Supplied
Staff and Students from the Department of Physics
Staff and students from the UFS Department of Physics with parts of the newly arrived astronomical spectrograph for the Boyden Observatory 1,5-m telescope. From the left, are: Dr Pat van Heerden, Daniel Kulik (honours student), Joleen Els (third-year student), Justin Cooper (honours student), Helene Szegedi (lecturer), Professor Petrus Meintjes, Dr Brian van Soelen, and Dr Richard Gray.

Stable atmospheric environments and near perfect weather conditions were the main reasons for the establishment of the Boyden Observatory a few kilometres outside Bloemfontein. This astronomical research observatory and science education centre is managed by the Department of Physics at the University of the Free State (UFS).

With the newly acquired astronomical spectrograph for the Boyden Observatory 1,5-m telescope, scientists will be able to gain visual access to both the Northern and Southern Hemisphere skies.

Collaboration with expert in stellar spectroscopy 


The spectrograph, mainly developed and built by Dr Richard Gray, will be used collaboratively for astronomical research by the UFS and the Appalachian State University (ASU) in North Carolina, where Dr Gray is based. 

Dr Gray is a world-renowned expert in stellar spectroscopy and leading author of one of the most influential textbooks on stellar spectroscopy, Stellar Spectral Classification, with co-author Christopher J Corbally.

Dr Gray recently received a Fulbright Scholarship from the Fulbright Foundation to spend a full year in the UFS Department of Physics, where he will lecture several Astronomy classes and do research in collaboration with personnel of the UFS Astrophysics Research Group. He will also lead the assembly of the instrument over the next few weeks, working with personnel and students in the Department of Physics as well as the UFS Instrumentation Division.

According to Prof Pieter Meintjes, Senior Professor from the UFS Department of Physics, some components of the instrument have been developed and constructed by the university’s Instrumentation Division, with key components purchased from funding by the Directorate: Research Development at the UFS.

Unique capability in infrastructure 

“The availability of a sophisticated instrument of this nature on the 1,5-m telescope will place the UFS Astrophysics Group in an elite bracket in terms of the available infrastructure for astronomical research,” said Prof Meintjes.

He explained: “The combined polarimetric-spectroscopic capability in one single instrument is unique. Combined with the fact that it is hosted on a research instrument that is utilised and maintained exclusively by the UFS Astronomy Group in the Department of Physics, gives this group a competitive edge in relation to most international astronomy groups.” 

The instrument is valued at close to R1,5 million. 

The Boyden Observatory
The Boyden Observatory. (Photo:Supplied)

According to Prof Meintjes, the instrument will be mounted at the backend of the UFS Boyden 1,5-m telescope and will allow them to do simultaneous polarimetry and spectroscopy of astronomical sources. “This is vital for the research we are working on,” he said.

International collaboration and student development

The instrument also brings with it the possibility of forging international collaborations for research as well as student development. “This can advance the stature of the UFS as an internationally respected research-led tertiary institution,” said Prof Meintjes. 

The possibility of making the UFS Boyden 1,5-m telescope completely remote-controlled, is being investigated. “This will serve the observational needs of researchers from both the UFS and the ASU, with researchers at ASU able to access the telescope for their own in-house research programmes. The availability of such an instrument on the UFS 1,5-m telescope also opens up the possibility to accommodate visiting researchers from ASU or elsewhere in the world at Boyden,” said Prof Meintjes.

News Archive

UFS Expert: Prof Felicity Burt investigates zoonotic and arboviruses
2017-12-13


 Description: Burt read more 2 Tags: Arboviruses, Felicity Burt, Crimean-Congo haemorrhagic fever, viruses  

Prof Felicity Burt recently received a B-rating from the
National Research
Foundation.
Photo: Sonia Small

Prof Felicity Burt is from the Division of Virology in the Faculty of Health Sciences at the University of the Free State (UFS), as well as the National Health Laboratory Services (NHLS). She currently holds an NRF-DST South African Research Chair in vector-borne and zoonotic diseases.  Professor Burt and her research group investigate arboviruses and zoonotic viruses. 

Prof Burt’s research primarily focuses on host immune responses to arboviral infections specifically characterising humoral and cellular immune responses in patients with infections such as Crimean-Congo haemorrhagic fever (CCHF) virus and Sindbis virus; epitope discovery for development of diagnostic tools; development of molecular and serological assays for surveillance purposes; virus discovery; and the development of vaccines.

Raising awareness of these viruses, defining associated diseases, and developing tools for surveillance programmes will contribute to understanding these pathogens as well as the public health implications.

Leads research group in papilloma viruses
Arboviruses cause outbreaks of disease in South Africa annually. Outbreaks are usually associated with heavy rainfall favouring the breeding of mosquitos, but these viruses also have the capacity to spread and become endemic in new areas where competent vectors are present. 
In addition, she is leading a research group that investigates human papilloma viruses (HPV) associated with head and neck cancers and recurrent laryngeal papilloma.

The focus of this research group is to ascertain the genotypes of HPV causing these diseases, identification of novel biomarkers for early detection, and complete genome sequencing for molecular characterisation of HPV isolates.  

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept