Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
11 October 2019 | Story Leonie Bolleurs | Photo Supplied
Staff and Students from the Department of Physics
Staff and students from the UFS Department of Physics with parts of the newly arrived astronomical spectrograph for the Boyden Observatory 1,5-m telescope. From the left, are: Dr Pat van Heerden, Daniel Kulik (honours student), Joleen Els (third-year student), Justin Cooper (honours student), Helene Szegedi (lecturer), Professor Petrus Meintjes, Dr Brian van Soelen, and Dr Richard Gray.

Stable atmospheric environments and near perfect weather conditions were the main reasons for the establishment of the Boyden Observatory a few kilometres outside Bloemfontein. This astronomical research observatory and science education centre is managed by the Department of Physics at the University of the Free State (UFS).

With the newly acquired astronomical spectrograph for the Boyden Observatory 1,5-m telescope, scientists will be able to gain visual access to both the Northern and Southern Hemisphere skies.

Collaboration with expert in stellar spectroscopy 


The spectrograph, mainly developed and built by Dr Richard Gray, will be used collaboratively for astronomical research by the UFS and the Appalachian State University (ASU) in North Carolina, where Dr Gray is based. 

Dr Gray is a world-renowned expert in stellar spectroscopy and leading author of one of the most influential textbooks on stellar spectroscopy, Stellar Spectral Classification, with co-author Christopher J Corbally.

Dr Gray recently received a Fulbright Scholarship from the Fulbright Foundation to spend a full year in the UFS Department of Physics, where he will lecture several Astronomy classes and do research in collaboration with personnel of the UFS Astrophysics Research Group. He will also lead the assembly of the instrument over the next few weeks, working with personnel and students in the Department of Physics as well as the UFS Instrumentation Division.

According to Prof Pieter Meintjes, Senior Professor from the UFS Department of Physics, some components of the instrument have been developed and constructed by the university’s Instrumentation Division, with key components purchased from funding by the Directorate: Research Development at the UFS.

Unique capability in infrastructure 

“The availability of a sophisticated instrument of this nature on the 1,5-m telescope will place the UFS Astrophysics Group in an elite bracket in terms of the available infrastructure for astronomical research,” said Prof Meintjes.

He explained: “The combined polarimetric-spectroscopic capability in one single instrument is unique. Combined with the fact that it is hosted on a research instrument that is utilised and maintained exclusively by the UFS Astronomy Group in the Department of Physics, gives this group a competitive edge in relation to most international astronomy groups.” 

The instrument is valued at close to R1,5 million. 

The Boyden Observatory
The Boyden Observatory. (Photo:Supplied)

According to Prof Meintjes, the instrument will be mounted at the backend of the UFS Boyden 1,5-m telescope and will allow them to do simultaneous polarimetry and spectroscopy of astronomical sources. “This is vital for the research we are working on,” he said.

International collaboration and student development

The instrument also brings with it the possibility of forging international collaborations for research as well as student development. “This can advance the stature of the UFS as an internationally respected research-led tertiary institution,” said Prof Meintjes. 

The possibility of making the UFS Boyden 1,5-m telescope completely remote-controlled, is being investigated. “This will serve the observational needs of researchers from both the UFS and the ASU, with researchers at ASU able to access the telescope for their own in-house research programmes. The availability of such an instrument on the UFS 1,5-m telescope also opens up the possibility to accommodate visiting researchers from ASU or elsewhere in the world at Boyden,” said Prof Meintjes.

News Archive

Fracking in the Karoo has advantages and disadvantages
2012-05-25

 

Dr Danie Vermeulen
Photo: Leatitia Pienaar
25 May 2012

Fracking for shale gas in the Karoo was laid bare during a public lecture by Dr Danie Vermeulen, Director of the Institute for Groundwater Studies (IGS). He shared facts, figures and research with his audience. No “yes” or “no” vote was cast. The audience was left to decide for itself.

The exploitation of shale gas in the pristine Karoo has probably been one of the most debated issues in South Africa since 2011.
 
Dr Vermeulen’s lecture, “The shale gas story in the Karoo: both sides of the coin”, was the first in a series presented by the Faculty of Natural and Agricultural Science under the theme “Sustainability”. Dr Vermeulen is a trained geo-hydrologist and geologist. He has been involved in fracking in South Africa since the debate started. He went on a study tour to the USA in 2011 to learn more about fracking and he visited the USA to further his investigation in May 2012.
 
Some of the information he shared, includes:

- It is estimated that South Africa has the fifth-largest shale-gas reserves in the world, following on China, the USA, Argentina and Mexico.
- Flow-back water is stored in sealed tanks and not in flow-back dams.
- Fracturing will not contaminate the water in an area, as the drilling of the wells will go far deeper than the groundwater aquifers. Every well has four steel casings – one within the other – with the gaps between them sealed with cement.
- More than a million hydraulic fracturing simulations took place in the USA without compromising fresh groundwater. The surface activities can cause problems because that is where man-made and managerial operations could cause pollution.
- Water use for shale-gas exploration is lower than for other kinds of energy, but the fact that the Karoo is an arid region makes the use of groundwater a sensitive issue. Dr Vermeulen highlighted this aspect as his major concern regarding shale-gas exploration.
- The cost to develop is a quarter of the cost for an oil well in the Gulf of Mexico.
- Dolerite intrusions in the Karoo are an unresearched concern. Dolerite is unique to the South African situation. Dolerite intrusion temperatures exceed 900 °C.

He also addressed the shale-gas footprint, well decommissioning and site reclamation, radio activity in the shale and the low possibility of seismic events.
 
Dr Vermeulen said South Africa is a net importer of energy. About 90% of its power supply is coal-based. For continued economic growth, South Africa needs a stable energy supply. It is also forecast that energy demand in South Africa is growing faster than the average global demand.
 
Unknowns to be addressed in research and exploration are the gas reserves and gas needs of South Africa. Do we have enough water? What will be the visual and social impact? Who must do the exploration?
 
“Only exploration will give us these answers,” Dr Vermeulen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept