Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
11 October 2019 | Story Leonie Bolleurs | Photo Supplied
Staff and Students from the Department of Physics
Staff and students from the UFS Department of Physics with parts of the newly arrived astronomical spectrograph for the Boyden Observatory 1,5-m telescope. From the left, are: Dr Pat van Heerden, Daniel Kulik (honours student), Joleen Els (third-year student), Justin Cooper (honours student), Helene Szegedi (lecturer), Professor Petrus Meintjes, Dr Brian van Soelen, and Dr Richard Gray.

Stable atmospheric environments and near perfect weather conditions were the main reasons for the establishment of the Boyden Observatory a few kilometres outside Bloemfontein. This astronomical research observatory and science education centre is managed by the Department of Physics at the University of the Free State (UFS).

With the newly acquired astronomical spectrograph for the Boyden Observatory 1,5-m telescope, scientists will be able to gain visual access to both the Northern and Southern Hemisphere skies.

Collaboration with expert in stellar spectroscopy 


The spectrograph, mainly developed and built by Dr Richard Gray, will be used collaboratively for astronomical research by the UFS and the Appalachian State University (ASU) in North Carolina, where Dr Gray is based. 

Dr Gray is a world-renowned expert in stellar spectroscopy and leading author of one of the most influential textbooks on stellar spectroscopy, Stellar Spectral Classification, with co-author Christopher J Corbally.

Dr Gray recently received a Fulbright Scholarship from the Fulbright Foundation to spend a full year in the UFS Department of Physics, where he will lecture several Astronomy classes and do research in collaboration with personnel of the UFS Astrophysics Research Group. He will also lead the assembly of the instrument over the next few weeks, working with personnel and students in the Department of Physics as well as the UFS Instrumentation Division.

According to Prof Pieter Meintjes, Senior Professor from the UFS Department of Physics, some components of the instrument have been developed and constructed by the university’s Instrumentation Division, with key components purchased from funding by the Directorate: Research Development at the UFS.

Unique capability in infrastructure 

“The availability of a sophisticated instrument of this nature on the 1,5-m telescope will place the UFS Astrophysics Group in an elite bracket in terms of the available infrastructure for astronomical research,” said Prof Meintjes.

He explained: “The combined polarimetric-spectroscopic capability in one single instrument is unique. Combined with the fact that it is hosted on a research instrument that is utilised and maintained exclusively by the UFS Astronomy Group in the Department of Physics, gives this group a competitive edge in relation to most international astronomy groups.” 

The instrument is valued at close to R1,5 million. 

The Boyden Observatory
The Boyden Observatory. (Photo:Supplied)

According to Prof Meintjes, the instrument will be mounted at the backend of the UFS Boyden 1,5-m telescope and will allow them to do simultaneous polarimetry and spectroscopy of astronomical sources. “This is vital for the research we are working on,” he said.

International collaboration and student development

The instrument also brings with it the possibility of forging international collaborations for research as well as student development. “This can advance the stature of the UFS as an internationally respected research-led tertiary institution,” said Prof Meintjes. 

The possibility of making the UFS Boyden 1,5-m telescope completely remote-controlled, is being investigated. “This will serve the observational needs of researchers from both the UFS and the ASU, with researchers at ASU able to access the telescope for their own in-house research programmes. The availability of such an instrument on the UFS 1,5-m telescope also opens up the possibility to accommodate visiting researchers from ASU or elsewhere in the world at Boyden,” said Prof Meintjes.

News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept