Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
25 August 2020 | Story Leonie Bolleurs | Photo Pixabay
Research-industry linkages for the promotion of biofortified maize and wheat, highlighted the link between research and industry.

Prof Maryke Labuschagne believes that research through collaboration can be to the benefit of the whole food chain, literally from laboratory to farm to fork. 

She is professor of Plant Sciences at the University of the Free State (UFS) and heads the SARChI Chair: Disease Resistance and Quality in Field Crops.

Prof Labuschagne recently delivered a presentation at a webinar organised by the International Maize and Wheat Improvement Center (CIMMYT) and the United States Agency for International Development (USAID). The focus was on Maize: Technologies, Development and Availability in South Asia. 

Her presentation: Research-industry linkages for the promotion of biofortified maize and wheat, highlighted the link between research and industry, stating that research outcomes should improve the livelihoods and health of people who grow and consume the food. 

Prof Labuschagne believes research by universities and research organisations can be linked to industry, with special reference to the development of biofortified crops. “Biofortification is the process where crop nutritional value is improved through genetic intervention,” she explains.

She states that the same technologies for crop biofortification can be applied throughout the world. 

In her presentation, Prof Labuschagne also reviewed the current technologies used, which include conventional genetic improvement and genetic engineering. Recently, the latter has been increasingly used for crop biofortification.

Enhancing nutritional value of crops

According to Prof Labuschagne, crop biofortification has developed exponentially in the last decade. Crop biofortification has been very successful in terms of improving the iron and zinc content, the provitamin A content, and the amounts of essential amino acids (lysine and tryptophan) in various staple foods.

“What we have learned is that genetic intervention in crop nutritional value is the best long-term solution to sustainably address vitamin and micronutrient deficiencies, especially in poor communities. It is a sustainable, and relatively cheap way to address mineral and vitamin deficiencies in the diets of people,” she says.

UFS research on biofortification

For a number of years now, a team of UFS scientists in the Division of Plant Breeding has been doing research on the biofortification of maize, sweet potatoes, bananas, and cassava. “The research took place in collaboration with a number of partners in Africa, and with funding from organisations such as the Bill and Melinda Gates Foundation.”

“This research has resulted in tangible outcomes, including the availability of seed and planting material of biofortified crops for farmers, who in turn make these crops available to consumers,” says Prof Labuschagne.

The crops not only add to the well-being of consumers, especially children and women, but also contribute to food security. 

News Archive

Stochastic Modelling for Reliability from Russia
2013-12-20

 

 Prof Maxim (MS) Finkelstein’s
The Russian professor first visited our university in 1993 and loved the environment. For the last 15 years we were fortunate to have had a man of Prof Maxim (MS) Finkelstein’s (65) stature as part of our Department of Mathematical Statistics.

“I like the atmosphere, the environment and the people of the UFS,” says Prof Finkelstein. “The UFS is a real campus, not part of the city as a lot of other universities in South Africa.”

Prof Finkelstein completed his MSc in Mathematical Physics from the Leningrad State University in the USSR in 1971. Maths and Physics have been a passion of his since a young age. In 1979, Prof Finkelstein completed his PhD in Mathematical Theory of Reliability at Leningrad Elektropribor Institute. Before his career at our university, Prof Finkelstein was a Senior Researcher at St. Petersburg Elektropribor Institute and an Associate Professor at Leningrad Technological Institute.

His long list of publications includes over 170 papers and five books. His monograph Failure Rate Modelling for Reliability and Risk was published by Springer in 2008. More recently another monograph – which was co-authored with JH Cha – was published by Springer in April 2013 and is called Stochastic Modelling for Reliability: Shocks, Burn-in, and Heterogeneous Populations.

Prof Finkelstein’s research interests include mathematical theory of reliability, survival analysis, risk and safety modelling, stochastic processes and stochastics in demography. When asked about leisure and life outside of research, the devoted academic’s response was as follows…

“To have publications, you have to work all the time. I work half of Saturdays and most of Sundays,” Prof Finkelstein says. “I spend three months a year in Russia and Germany – mostly during the European summer – for my research.”
“But apart from that, I like reading – classical Russian authors mostly. I swim in the UFS’s swimming pool almost every day and I play tennis as well.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept