Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
25 August 2020 | Story Leonie Bolleurs | Photo Pixabay
Research-industry linkages for the promotion of biofortified maize and wheat, highlighted the link between research and industry.

Prof Maryke Labuschagne believes that research through collaboration can be to the benefit of the whole food chain, literally from laboratory to farm to fork. 

She is professor of Plant Sciences at the University of the Free State (UFS) and heads the SARChI Chair: Disease Resistance and Quality in Field Crops.

Prof Labuschagne recently delivered a presentation at a webinar organised by the International Maize and Wheat Improvement Center (CIMMYT) and the United States Agency for International Development (USAID). The focus was on Maize: Technologies, Development and Availability in South Asia. 

Her presentation: Research-industry linkages for the promotion of biofortified maize and wheat, highlighted the link between research and industry, stating that research outcomes should improve the livelihoods and health of people who grow and consume the food. 

Prof Labuschagne believes research by universities and research organisations can be linked to industry, with special reference to the development of biofortified crops. “Biofortification is the process where crop nutritional value is improved through genetic intervention,” she explains.

She states that the same technologies for crop biofortification can be applied throughout the world. 

In her presentation, Prof Labuschagne also reviewed the current technologies used, which include conventional genetic improvement and genetic engineering. Recently, the latter has been increasingly used for crop biofortification.

Enhancing nutritional value of crops

According to Prof Labuschagne, crop biofortification has developed exponentially in the last decade. Crop biofortification has been very successful in terms of improving the iron and zinc content, the provitamin A content, and the amounts of essential amino acids (lysine and tryptophan) in various staple foods.

“What we have learned is that genetic intervention in crop nutritional value is the best long-term solution to sustainably address vitamin and micronutrient deficiencies, especially in poor communities. It is a sustainable, and relatively cheap way to address mineral and vitamin deficiencies in the diets of people,” she says.

UFS research on biofortification

For a number of years now, a team of UFS scientists in the Division of Plant Breeding has been doing research on the biofortification of maize, sweet potatoes, bananas, and cassava. “The research took place in collaboration with a number of partners in Africa, and with funding from organisations such as the Bill and Melinda Gates Foundation.”

“This research has resulted in tangible outcomes, including the availability of seed and planting material of biofortified crops for farmers, who in turn make these crops available to consumers,” says Prof Labuschagne.

The crops not only add to the well-being of consumers, especially children and women, but also contribute to food security. 

News Archive

UFS team helps a pupil to hear again
2014-01-24

 

“I was scared at first. I could not remember the sound of my own voice. Being Deaf -it was like living on another planet.”

These are the words of the 18-year-old Andile (Godfrey) Jantjies after he heard sounds and words for the first time in almost 12 months.

Andile, a former pupil at the Albert Moroka School in Thaba Nchu, was the recipient of a cochlear implantation under the Bloemfontein Cochlear Implant Programme (BCIP) run by the Department of Otorhinolaryngology at the University of the Free State.

Andile lost his hearing after contracting bacterial meningitis in June 2013. This resulted in bilateral profound deafness and despite his good academic record, his school refused to have him enrolled for 2014.

The cochlear implant was inserted in October 2013 and was switched on for the first time on Thursday 23 January 2014.

“I want to go back immediately,” Andile said excitedly after gradually becoming comfortable with hearing his own and other voices.

Dr Iain Butler from the Department of Otorhinolaryngology says cases like Andile’s are a medical emergencies due to the fact that meningitis causes the inner ear to become replaced by bone.

“This can occur after as little as four months after the infection and means that the insertion of a cochlear implant becomes impossible.

A cochlear implant system costs approximately R220 000.

It converts sounds/speech into electrical signals that directly stimulate the auditory nerve, bypassing the damaged inner ear. It is indicated for babies with congenital hearing loss, as well as acquired hearing loss in children or adults. It requires intensive rehabilitation in order to learn to hear again, and most recipients develop very good hearing. Andile now has the opportunity to hear again, continue his schooling and become an economically independent member of society, rather than being dependent on others.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept