Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
25 August 2020 | Story Leonie Bolleurs | Photo Pixabay
Research-industry linkages for the promotion of biofortified maize and wheat, highlighted the link between research and industry.

Prof Maryke Labuschagne believes that research through collaboration can be to the benefit of the whole food chain, literally from laboratory to farm to fork. 

She is professor of Plant Sciences at the University of the Free State (UFS) and heads the SARChI Chair: Disease Resistance and Quality in Field Crops.

Prof Labuschagne recently delivered a presentation at a webinar organised by the International Maize and Wheat Improvement Center (CIMMYT) and the United States Agency for International Development (USAID). The focus was on Maize: Technologies, Development and Availability in South Asia. 

Her presentation: Research-industry linkages for the promotion of biofortified maize and wheat, highlighted the link between research and industry, stating that research outcomes should improve the livelihoods and health of people who grow and consume the food. 

Prof Labuschagne believes research by universities and research organisations can be linked to industry, with special reference to the development of biofortified crops. “Biofortification is the process where crop nutritional value is improved through genetic intervention,” she explains.

She states that the same technologies for crop biofortification can be applied throughout the world. 

In her presentation, Prof Labuschagne also reviewed the current technologies used, which include conventional genetic improvement and genetic engineering. Recently, the latter has been increasingly used for crop biofortification.

Enhancing nutritional value of crops

According to Prof Labuschagne, crop biofortification has developed exponentially in the last decade. Crop biofortification has been very successful in terms of improving the iron and zinc content, the provitamin A content, and the amounts of essential amino acids (lysine and tryptophan) in various staple foods.

“What we have learned is that genetic intervention in crop nutritional value is the best long-term solution to sustainably address vitamin and micronutrient deficiencies, especially in poor communities. It is a sustainable, and relatively cheap way to address mineral and vitamin deficiencies in the diets of people,” she says.

UFS research on biofortification

For a number of years now, a team of UFS scientists in the Division of Plant Breeding has been doing research on the biofortification of maize, sweet potatoes, bananas, and cassava. “The research took place in collaboration with a number of partners in Africa, and with funding from organisations such as the Bill and Melinda Gates Foundation.”

“This research has resulted in tangible outcomes, including the availability of seed and planting material of biofortified crops for farmers, who in turn make these crops available to consumers,” says Prof Labuschagne.

The crops not only add to the well-being of consumers, especially children and women, but also contribute to food security. 

News Archive

Collaboration between UFS and Mayo Clinic to revolutionise cancer treatment
2014-06-27



Attending the lecture were, from the left: Dr Chantel Swart, Prof Lodewyk Kock, Prof Debabrata Mukhopadhyay, Prof James du Preez; back: Prof Pieter van Wyk.
Dr Swart, Profs Kock and Du Preez are from the Department of Microbial, Biochemical and Food Biotechnology. Prof Mukhopadhyay is from the Mayo Clinic (US) and Prof Van Wyk is from the Centre for Microscopy at the UFS.
Photo: Supplied
The UFS made a discovery that may have enormous implications for the treatment of diseases in humans.

Since the discovery, the UFS joined forces with the Mayo Clinic in Rochester, US, in the fight against cancer.

In this collective effort, UFS researchers would be able to assist the Mayo team to:
• see how treatment in cancer patients is progressing,
• target treatments more effectively,
• reduce dosages in order to make treatment gentler on the patient,
• track the effectiveness of the chemotherapy drugs used, and
• gain an accurate view of how the cancer is being eliminated.

Prof Lodewyk Kock, Outstanding Professor at the Department of Microbial, Biochemical and Food Biotechnology, and his team incidentally created a technique to use argon gas particles for the first time on biological material to slice open cells to look inside.

The team that supported Prof Kock includes Dr Chantel Swart, Khumisho Dithebe (PhD student), Prof Hendrik Swart (Department of Physics) and Prof Pieter van Wyk (Centre for Microscopy).

Prof Debabrata Mukhopadhyay from the Mayo Clinic in Rochester, US, got to hear about this breakthrough at the UFS and a collaboration between the two institutions was established.

During a visit to the Bloemfontein Campus, Prof Mukhopadhyay explained novel techniques that make use of gold nanoparticles. These particles attach to chemotherapeutic drugs to selectively target cancer cells – dramatically decreasing the side effects to normal human cells.

For these new drugs (coupled to gold nanoparticles) to be accepted into clinical practice, visual and chemical proof is needed, though. This is where the technique developed by the UFS will play a vital role.

With the technique to look inside cells, the composition, location and metabolism of these drugs can be determined. This will aid in a proof of concept for the application of the nano-drugs. Furthermore, it will enable approval for use of these drugs in clinical trials and eventually could revolutionise cancer treatment as a whole.

For video lectures on the technique used, as well as its findings, follow these links:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept