Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
25 August 2020 | Story Leonie Bolleurs | Photo Pixabay
Research-industry linkages for the promotion of biofortified maize and wheat, highlighted the link between research and industry.

Prof Maryke Labuschagne believes that research through collaboration can be to the benefit of the whole food chain, literally from laboratory to farm to fork. 

She is professor of Plant Sciences at the University of the Free State (UFS) and heads the SARChI Chair: Disease Resistance and Quality in Field Crops.

Prof Labuschagne recently delivered a presentation at a webinar organised by the International Maize and Wheat Improvement Center (CIMMYT) and the United States Agency for International Development (USAID). The focus was on Maize: Technologies, Development and Availability in South Asia. 

Her presentation: Research-industry linkages for the promotion of biofortified maize and wheat, highlighted the link between research and industry, stating that research outcomes should improve the livelihoods and health of people who grow and consume the food. 

Prof Labuschagne believes research by universities and research organisations can be linked to industry, with special reference to the development of biofortified crops. “Biofortification is the process where crop nutritional value is improved through genetic intervention,” she explains.

She states that the same technologies for crop biofortification can be applied throughout the world. 

In her presentation, Prof Labuschagne also reviewed the current technologies used, which include conventional genetic improvement and genetic engineering. Recently, the latter has been increasingly used for crop biofortification.

Enhancing nutritional value of crops

According to Prof Labuschagne, crop biofortification has developed exponentially in the last decade. Crop biofortification has been very successful in terms of improving the iron and zinc content, the provitamin A content, and the amounts of essential amino acids (lysine and tryptophan) in various staple foods.

“What we have learned is that genetic intervention in crop nutritional value is the best long-term solution to sustainably address vitamin and micronutrient deficiencies, especially in poor communities. It is a sustainable, and relatively cheap way to address mineral and vitamin deficiencies in the diets of people,” she says.

UFS research on biofortification

For a number of years now, a team of UFS scientists in the Division of Plant Breeding has been doing research on the biofortification of maize, sweet potatoes, bananas, and cassava. “The research took place in collaboration with a number of partners in Africa, and with funding from organisations such as the Bill and Melinda Gates Foundation.”

“This research has resulted in tangible outcomes, including the availability of seed and planting material of biofortified crops for farmers, who in turn make these crops available to consumers,” says Prof Labuschagne.

The crops not only add to the well-being of consumers, especially children and women, but also contribute to food security. 

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept