Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
29 January 2020 | Story Leonie Bolleurs | Photo Dr Marieka Gryzenhout and Gary Goldman.
Mushroom
Scutellinia scutellate, commonly known as eyelash cup, molly eye-winker, scarlet elf cap, or eyelash fungus, grows gregariously, or in clusters, and sometimes in dense swarms on moist hardwood logs, sometimes near water or marshy places.

Citizen scientists and nature lovers who are serious and enthusiastic about fungi, can now sit back and relax with a copy of the recently published nature guide titled FField guide to mushrooms & other fungi of South Africa (Penguin Random House Struik, Cape Town).

Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer in the Department of Genetics at the University of the Free State (UFS), co-authored the book with Gary Goldman, amateur mycologist from Cape Town.

The book contains descriptions of 200 species and extensive background information and tips on fungi.

‘They are all beautiful to me’

Dr Gryzenhout says fungi are her passion, both small and large. “Interest in mushrooms is currently booming in South Africa, and there was thus a great need to bring out a book with more species than my previous book, Pocket Guide to Mushrooms of South Africa, published in 2010.”

The latter is the first book that Dr Gryzenhout published on South African mushrooms. The book is still available in stores and she is currently revising it.

She does not have a favourite mushroom or fungus, “because they are all beautiful to me”, she states. In the book she published with Goldman, they cover, among others, general information on what fungi are – since very few people know about them. The book also serves as an identification guide, with a range of photographs for each species to make identification easier. 

Goldman furthermore added his flair and expertise, with general information on how to forage for mushrooms (hunting for mushrooms) for the dinner table, together with some tasty recipes.

“Citizen scientists are mostly interested in the edible fungi and mushrooms. However, they are beautiful and conspicuous, and it is gratifying to find them and actually being able to identify this rather ill-studied group,” adds Dr Gryzenhout.

Contributions of citizen scientists helpful

She says, in general, people were overjoyed that another guide on mushrooms was finally published. Dr Gryzenhout continues: “The excellent range of photographs, contributed by a variety of citizen scientists, were stunning and helpful.  In the time when the book came out, no less than seven mushroom-related societies were brought to life by citizens due to the rapidly growing interest in fungi and the need for information. A follow-up to the book is already needed!”

She says the book is bought as gifts and prizes in these societies, “which we are really humbled about. Since the book contains a number of first reports for South Africa as well as a range of edible and poisonous fungi, it is also important for biodiversity and human health.”

More than 1 500 copies of the book have already been sold since is appearance.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept