Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
29 January 2020 | Story Leonie Bolleurs | Photo Dr Marieka Gryzenhout and Gary Goldman.
Mushroom
Scutellinia scutellate, commonly known as eyelash cup, molly eye-winker, scarlet elf cap, or eyelash fungus, grows gregariously, or in clusters, and sometimes in dense swarms on moist hardwood logs, sometimes near water or marshy places.

Citizen scientists and nature lovers who are serious and enthusiastic about fungi, can now sit back and relax with a copy of the recently published nature guide titled FField guide to mushrooms & other fungi of South Africa (Penguin Random House Struik, Cape Town).

Dr Marieka Gryzenhout, a C-rated scientist and Senior Lecturer in the Department of Genetics at the University of the Free State (UFS), co-authored the book with Gary Goldman, amateur mycologist from Cape Town.

The book contains descriptions of 200 species and extensive background information and tips on fungi.

‘They are all beautiful to me’

Dr Gryzenhout says fungi are her passion, both small and large. “Interest in mushrooms is currently booming in South Africa, and there was thus a great need to bring out a book with more species than my previous book, Pocket Guide to Mushrooms of South Africa, published in 2010.”

The latter is the first book that Dr Gryzenhout published on South African mushrooms. The book is still available in stores and she is currently revising it.

She does not have a favourite mushroom or fungus, “because they are all beautiful to me”, she states. In the book she published with Goldman, they cover, among others, general information on what fungi are – since very few people know about them. The book also serves as an identification guide, with a range of photographs for each species to make identification easier. 

Goldman furthermore added his flair and expertise, with general information on how to forage for mushrooms (hunting for mushrooms) for the dinner table, together with some tasty recipes.

“Citizen scientists are mostly interested in the edible fungi and mushrooms. However, they are beautiful and conspicuous, and it is gratifying to find them and actually being able to identify this rather ill-studied group,” adds Dr Gryzenhout.

Contributions of citizen scientists helpful

She says, in general, people were overjoyed that another guide on mushrooms was finally published. Dr Gryzenhout continues: “The excellent range of photographs, contributed by a variety of citizen scientists, were stunning and helpful.  In the time when the book came out, no less than seven mushroom-related societies were brought to life by citizens due to the rapidly growing interest in fungi and the need for information. A follow-up to the book is already needed!”

She says the book is bought as gifts and prizes in these societies, “which we are really humbled about. Since the book contains a number of first reports for South Africa as well as a range of edible and poisonous fungi, it is also important for biodiversity and human health.”

More than 1 500 copies of the book have already been sold since is appearance.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept