Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
31 March 2020 | Story Leonie Bolleurs | Photo Gerhard de Jager
Prof Linda Basson recently returned from a three-month research expedition in Antarctica. Here she is, relaxing on the ice with the ever-inquisitive Adelie penguins having a gander at these strangers in their snowy world.
Prof Linda Basson recently returned from a three-month research expedition in Antarctica. Here she is, relaxing on the ice with the ever-inquisitive Adelie penguins having a gander at these strangers in their snowy world.

Very little is known about the parasites of Antarctica, which is a highly productive part of the oceans. These small organisms can be used very successfully to determine the health of this fragile ecosystem.

“Our research data can make significant contributions to the biodiversity of parasites, for a start. The data can also be very valuable to indicate the overall health of this large ecosystem – an ecosystem that drives many of the life-giving processes on our planet.” This is the belief of Prof Linda Basson from the Department of Zoology and Entomology at the University of the Free State (UFS). 

She is an aquatic parasitologist who concentrates on various parasites from a wide range of hosts, including vertebrates (fish and amphibians) and invertebrates (plankton, urchins, starfish, sea cucumbers and red-bait).

Prof Basson, together with PhD student Gerhard de Jager, was invited by Prof Isabelle Ansorge, Head of the School of Oceanography, University of Cape Town, to join her research team on the South African National Antarctic Programme (SANAE) Voyage 59 to Antarctica. 

Widen the scope of research 
“Our aim on this trip was to determine how we can collaborate with the various oceanographers to widen the scope of research normally performed on these voyages, in order to also include parasitological aspects. Once we arrived on the continent of Antarctica, we worked to collect a range of hosts from the Southern Ocean to screen these for the whole array of parasites,” she explains. 

No research of any kind on aquatic parasites has ever been done in Penguin Bukta and Akta Bukta, the specific areas where Prof Basson was based with other scientists and the rest of the Agulhas crew.

She adds: “Our research will contribute to the wider knowledge of parasites in marine environments, but specifically in this area where little to nothing is known.”

A chance of a lifetime 
“Antarctica was literally one of the top research destinations on my bucket list. Travelling to and working in Antarctica is a lifelong dream of mine. It was a chance of a lifetime that I could not miss out on,” says Prof Basson. 

Sharing her experience, she says a typical day on board the SA Agulhas II in Antarctica will start with a cup of good, quality coffee and a look at the prevailing weather on the stern of the ship. 

“One would always be amazed by the beautiful, ceaselessly changing water, the restless sea ice and the impressive ancient ice shelf in very invigorating temperatures, while an ethereal Snow Petrel swirls past and the occasional Adelie penguin comes to gaze and contemplate the presence of this large red structure floating in their habitat and obscuring their view. After tearing yourself away from this, the rest of the day would be spent either in the well-equipped laboratory working through collected samples, or else planning the next exciting collection in the intensely cold water.”

Remarkable journey 
To eternalise memories of this unique experience of almost three months, Prof Basson says that, “One cannot go without a fully charged camera with a large SD card, ready to capture the many facets of this exceedingly fragile but enchanting world of ice and sky, ever changing and all in innumerable shades of white”.

“This truly remarkable journey will forever be associated with a myriad of brilliant highlights.”

Finding it extremely difficult to single out a specific highlight, she listed a long list of memorable events, but as a scientist she will always remember “realising the wealth and cornucopia of microscopic life present in the southernmost of our oceans and seeing this first-hand under the microscope”.

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept