Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
31 March 2020 | Story Leonie Bolleurs | Photo Gerhard de Jager
Prof Linda Basson recently returned from a three-month research expedition in Antarctica. Here she is, relaxing on the ice with the ever-inquisitive Adelie penguins having a gander at these strangers in their snowy world.
Prof Linda Basson recently returned from a three-month research expedition in Antarctica. Here she is, relaxing on the ice with the ever-inquisitive Adelie penguins having a gander at these strangers in their snowy world.

Very little is known about the parasites of Antarctica, which is a highly productive part of the oceans. These small organisms can be used very successfully to determine the health of this fragile ecosystem.

“Our research data can make significant contributions to the biodiversity of parasites, for a start. The data can also be very valuable to indicate the overall health of this large ecosystem – an ecosystem that drives many of the life-giving processes on our planet.” This is the belief of Prof Linda Basson from the Department of Zoology and Entomology at the University of the Free State (UFS). 

She is an aquatic parasitologist who concentrates on various parasites from a wide range of hosts, including vertebrates (fish and amphibians) and invertebrates (plankton, urchins, starfish, sea cucumbers and red-bait).

Prof Basson, together with PhD student Gerhard de Jager, was invited by Prof Isabelle Ansorge, Head of the School of Oceanography, University of Cape Town, to join her research team on the South African National Antarctic Programme (SANAE) Voyage 59 to Antarctica. 

Widen the scope of research 
“Our aim on this trip was to determine how we can collaborate with the various oceanographers to widen the scope of research normally performed on these voyages, in order to also include parasitological aspects. Once we arrived on the continent of Antarctica, we worked to collect a range of hosts from the Southern Ocean to screen these for the whole array of parasites,” she explains. 

No research of any kind on aquatic parasites has ever been done in Penguin Bukta and Akta Bukta, the specific areas where Prof Basson was based with other scientists and the rest of the Agulhas crew.

She adds: “Our research will contribute to the wider knowledge of parasites in marine environments, but specifically in this area where little to nothing is known.”

A chance of a lifetime 
“Antarctica was literally one of the top research destinations on my bucket list. Travelling to and working in Antarctica is a lifelong dream of mine. It was a chance of a lifetime that I could not miss out on,” says Prof Basson. 

Sharing her experience, she says a typical day on board the SA Agulhas II in Antarctica will start with a cup of good, quality coffee and a look at the prevailing weather on the stern of the ship. 

“One would always be amazed by the beautiful, ceaselessly changing water, the restless sea ice and the impressive ancient ice shelf in very invigorating temperatures, while an ethereal Snow Petrel swirls past and the occasional Adelie penguin comes to gaze and contemplate the presence of this large red structure floating in their habitat and obscuring their view. After tearing yourself away from this, the rest of the day would be spent either in the well-equipped laboratory working through collected samples, or else planning the next exciting collection in the intensely cold water.”

Remarkable journey 
To eternalise memories of this unique experience of almost three months, Prof Basson says that, “One cannot go without a fully charged camera with a large SD card, ready to capture the many facets of this exceedingly fragile but enchanting world of ice and sky, ever changing and all in innumerable shades of white”.

“This truly remarkable journey will forever be associated with a myriad of brilliant highlights.”

Finding it extremely difficult to single out a specific highlight, she listed a long list of memorable events, but as a scientist she will always remember “realising the wealth and cornucopia of microscopic life present in the southernmost of our oceans and seeing this first-hand under the microscope”.

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept