Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
31 March 2020 | Story Leonie Bolleurs | Photo Supplied
UFS Covid-19 vaccine research team
Prof Robert Bragg and members of the Veterinary Biotechnology research group believe that finding a vaccine for COVID-19 will not be a ‘quick fix’. From the left are: Prof Bragg, Samantha McCarlie, Liese Kilian, and Dr Charlotte Boucher-van Jaarsveld. The photo was taken during the World Veterinary Poultry Association congress in Thailand in 2019.

On 31 March 2020, there were 804 061 coronavirus cases and 39 064 deaths globally due to the outbreak. According to media reports, there is still no licensed vaccine for COVID-2019 – the cause of our current global health emergency.  

Prof Robert Bragg, researcher at the University of the Free State (UFS), says this is without a doubt the most pressing research need in the world today. 

The Veterinary Biotechnology research group in the Department of Microbial, Biochemical, and Food Biotechnology at the UFS recently submitted an article for publication on the design of a possible COVID-19 vaccine, based on work they have done on infectious bronchitis virus (also a coronavirus). The article, authored by the group of which Prof Bragg is a member, is titled: A sub-unit vaccine produced in 'Yarrowia lipolytica' against COVID-19: Lessons learnt from infectious bronchitis virus. 

The research group, consisting of researchers and postgraduate students, is mostly looking at strategies for improved disease control, mainly in avian species, through vaccine development, treatment, and biosecurity.

Prof Bragg says their main aim with this study was to get the research out there so that the bigger pharmaceutical companies could take up the design of a possible COVID-19 vaccine and assist with the development of a vaccine. 

He says the research group’s role in this lengthy process would be to express the protein, which could be used in the development of a possible vaccine. “Thereafter, it will have to be taken up by a vaccine manufacturer to get the vaccine made and to the market.”

Developing a vaccine
Liese Kilian, a member of the research group, finished writing up her MSc thesis in Microbiology in the UFS Department of Microbial, Biochemical, and Food Biotechnology in December 2019 – the same time that COVID-19 originated in China. She has been working on the development of an edible sub-unit vaccine against the infectious bronchitis virus (IBV), which is a widespread avian coronavirus. This virus is specific to poultry and is different from COVID-19. 

Kilian’s project was conducted under the supervision of Prof Bragg and Dr Charlotte Boucher-van Jaarsveld. Dr Boucher-van Jaarsveld is a research fellow in the university’s Department of Microbial, Biochemical and Food Biotechnology.

Kilian, with the assistance of Samantha Mc Carlie, currently a master’s student in the research group, substituted the genetic code of the IBV with the genetic code of the COVID-19 virus, which were already published at that stage. Thus, a gene for the development of a possible sub-unit vaccine against the S1 spike protein of COVID-19 was developed for expression in the same yeast strain used to express the spike protein of IBV. A sub-unit vaccine can be described as part of a pathogen, triggering an immune response against the pathogen from which it is derived.

After Killian successfully developed the gene for this study, she expressed the S1 spike protein of the IBV in a yeast-based expression system developed by the research group. Dr Boucher-van Jaarsveld says this simply means that the yeast takes up the foreign genetic material (viral gene) into its own genetic make-up and makes more of this protein as if it is part of the yeast’s normal material. 

“The images of COVID-19 are being shown constantly in the media and the ‘spikes’ can be seen on all of these images. These spikes are very typical for all coronaviruses and there is some level of similarity between the structure of these spikes in many of the coronaviruses,” Prof Bragg adds.

According to the World Health Organisation, the spike protein is a promising candidate for a sub-unit vaccine due to its immunogenicity and safety, as well as manufacturing and stability considerations during large-scale development.

Prof Bragg says there are many different expression systems that are widely used. Producing the sub-unit vaccine in a yeast species is beneficial for the work they are doing. A yeast expression system is favourable as large-scale production, is less expensive compared to mammalian cell lines, and can be applied as an edible vaccine.

“The technology to grow massive volumes of yeast are also very well established. This, after all, is how beer is made!” Prof Bragg says. Dr Boucher-van Jaarsveld adds: “The expression of an antigen is not necessarily just geared towards vaccines but can also be used in the development of diagnostic tests to screen populations for infections.”

Working with other researchers
“Now that the situation is all but out of control, we maybe need to investigate the possibilities of working with other key researchers at the UFS as well as other universities in South Africa to develop the vaccine or diagnostic reagents locally. Discussions on this aspect are already underway.”

Several other universities in South Africa are also working to find a cure for the virus. Government availed funding for more research on the matter. According to Higher Education, Science and Technology Minister, Blade Nzimande, the University of Cape Town, the Council for Scientific and Industrial Research, as well as the Vaccines Institute of Southern Africa are working on the development of a vaccine.

Prof Bragg expressed the hope of obtaining funding for this work. “Because without funding, we will not be able to do anything with this data,” he says. They are currently investigating different funding options. 

“The sooner we start on the development of a vaccine, the sooner there will be one, but it will not be a ‘quick fix’. It must be stressed that, even if vaccine development is fast-tracked through the regulatory bodies, it will take many months (if not years) to move from the laboratory to the first human experimentation. It will take even longer before any human vaccine can be rolled out,” says Prof Bragg.



News Archive

Geology researcher wins international photographic contest
2017-06-02

Description: Dr Elizaveta Kovaleva Tags: Dr Elizaveta Kovaleva

In this winning photo, “Movement of the ancient sand”,
Dr Matthew Huber, postdoctoral research fellow in the
Department of Geology at UFS, is scaling an outcrop
of sandstone (former sand dunes) in the Zion National
Park in the US.
Photo: Dr Elizaveta Kovaleva


Dr Elizaveta Kovaleva and Dr Matthew Huber, postdoctoral research fellows in the Department of Geology at the University of the Free State (UFS), attended the European Geosciences Union (EGU) General Assembly in Vienna, Austria in April 2017, where Dr Kovaleva was declared a winner of the EGU photo contest with a photograph entitled “Movement of the ancient sand”.

Submitting the winning photo
Each participant could submit up to three photos to participate in the contest before the conference. From all the photographs 10 were selected and displayed for the entire week at the assembly so participants could vote for their three favourite photos. At the end of the week three winners were selected. The prize winners received a free EGU book of their choice, free registration for next year’s EGU and an option to judge the photo competition next year. The photos will be printed on postcards next year, so all participants can send them wherever they want around the globe.

“The picture was taken in the Zion National Park in the US. Myself and Dr Huber were travelling around the western states, visiting national parks. The person in the picture is Dr Huber,” said Dr Kovaleva.

Dr Kovaleva was also invited to participate - as a recently published author - in a workshop, called: ”Publishing in EGU journals: Solid Earth and Earth Surface Dynamics – Meet the Editors”.

At the assembly, Dr Kovaleva attended sessions on Tectonics and Structural Geology as well as on Geochemistry, Mineralogy, Petrology and Volcanology. These sessions were especially interesting in the scope of her research and are directly related to it. “I am a metamorphic petrologist, and with my PhD, I essentially studied microstructures. At the moment, I am studying the Vredefort impact crater, which has experienced both metamorphism and deformation,” she said.

“The winning photos will be printed on postcards,
so all participants can send them wherever they
want around the globe”.

Building scientific connections
For both researchers, the assembly was an opportunity to meet former colleagues and professors from universities all over the world and shake hands with authors whose papers and work they were familiar with, but had never met in person.

“EGU is a perfect opportunity to build scientific connections and relationships, advertise your research and start new collaborations and projects,” said Dr Kovaleva.

The EGU General Assembly 2017 was a great success, with 4 849 oral, 11 312 poster, and 1 238 PICO presentations. Some 649 unique scientific sessions, together with 88 short courses and 322 side events, created an interesting programme. At the conference 14 496 scientists from 107 countries participated, of whom 53% were under the age of 35. Thirty one were from South Africa.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept