Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
31 March 2020 | Story Leonie Bolleurs | Photo Supplied
UFS Covid-19 vaccine research team
Prof Robert Bragg and members of the Veterinary Biotechnology research group believe that finding a vaccine for COVID-19 will not be a ‘quick fix’. From the left are: Prof Bragg, Samantha McCarlie, Liese Kilian, and Dr Charlotte Boucher-van Jaarsveld. The photo was taken during the World Veterinary Poultry Association congress in Thailand in 2019.

On 31 March 2020, there were 804 061 coronavirus cases and 39 064 deaths globally due to the outbreak. According to media reports, there is still no licensed vaccine for COVID-2019 – the cause of our current global health emergency.  

Prof Robert Bragg, researcher at the University of the Free State (UFS), says this is without a doubt the most pressing research need in the world today. 

The Veterinary Biotechnology research group in the Department of Microbial, Biochemical, and Food Biotechnology at the UFS recently submitted an article for publication on the design of a possible COVID-19 vaccine, based on work they have done on infectious bronchitis virus (also a coronavirus). The article, authored by the group of which Prof Bragg is a member, is titled: A sub-unit vaccine produced in 'Yarrowia lipolytica' against COVID-19: Lessons learnt from infectious bronchitis virus. 

The research group, consisting of researchers and postgraduate students, is mostly looking at strategies for improved disease control, mainly in avian species, through vaccine development, treatment, and biosecurity.

Prof Bragg says their main aim with this study was to get the research out there so that the bigger pharmaceutical companies could take up the design of a possible COVID-19 vaccine and assist with the development of a vaccine. 

He says the research group’s role in this lengthy process would be to express the protein, which could be used in the development of a possible vaccine. “Thereafter, it will have to be taken up by a vaccine manufacturer to get the vaccine made and to the market.”

Developing a vaccine
Liese Kilian, a member of the research group, finished writing up her MSc thesis in Microbiology in the UFS Department of Microbial, Biochemical, and Food Biotechnology in December 2019 – the same time that COVID-19 originated in China. She has been working on the development of an edible sub-unit vaccine against the infectious bronchitis virus (IBV), which is a widespread avian coronavirus. This virus is specific to poultry and is different from COVID-19. 

Kilian’s project was conducted under the supervision of Prof Bragg and Dr Charlotte Boucher-van Jaarsveld. Dr Boucher-van Jaarsveld is a research fellow in the university’s Department of Microbial, Biochemical and Food Biotechnology.

Kilian, with the assistance of Samantha Mc Carlie, currently a master’s student in the research group, substituted the genetic code of the IBV with the genetic code of the COVID-19 virus, which were already published at that stage. Thus, a gene for the development of a possible sub-unit vaccine against the S1 spike protein of COVID-19 was developed for expression in the same yeast strain used to express the spike protein of IBV. A sub-unit vaccine can be described as part of a pathogen, triggering an immune response against the pathogen from which it is derived.

After Killian successfully developed the gene for this study, she expressed the S1 spike protein of the IBV in a yeast-based expression system developed by the research group. Dr Boucher-van Jaarsveld says this simply means that the yeast takes up the foreign genetic material (viral gene) into its own genetic make-up and makes more of this protein as if it is part of the yeast’s normal material. 

“The images of COVID-19 are being shown constantly in the media and the ‘spikes’ can be seen on all of these images. These spikes are very typical for all coronaviruses and there is some level of similarity between the structure of these spikes in many of the coronaviruses,” Prof Bragg adds.

According to the World Health Organisation, the spike protein is a promising candidate for a sub-unit vaccine due to its immunogenicity and safety, as well as manufacturing and stability considerations during large-scale development.

Prof Bragg says there are many different expression systems that are widely used. Producing the sub-unit vaccine in a yeast species is beneficial for the work they are doing. A yeast expression system is favourable as large-scale production, is less expensive compared to mammalian cell lines, and can be applied as an edible vaccine.

“The technology to grow massive volumes of yeast are also very well established. This, after all, is how beer is made!” Prof Bragg says. Dr Boucher-van Jaarsveld adds: “The expression of an antigen is not necessarily just geared towards vaccines but can also be used in the development of diagnostic tests to screen populations for infections.”

Working with other researchers
“Now that the situation is all but out of control, we maybe need to investigate the possibilities of working with other key researchers at the UFS as well as other universities in South Africa to develop the vaccine or diagnostic reagents locally. Discussions on this aspect are already underway.”

Several other universities in South Africa are also working to find a cure for the virus. Government availed funding for more research on the matter. According to Higher Education, Science and Technology Minister, Blade Nzimande, the University of Cape Town, the Council for Scientific and Industrial Research, as well as the Vaccines Institute of Southern Africa are working on the development of a vaccine.

Prof Bragg expressed the hope of obtaining funding for this work. “Because without funding, we will not be able to do anything with this data,” he says. They are currently investigating different funding options. 

“The sooner we start on the development of a vaccine, the sooner there will be one, but it will not be a ‘quick fix’. It must be stressed that, even if vaccine development is fast-tracked through the regulatory bodies, it will take many months (if not years) to move from the laboratory to the first human experimentation. It will take even longer before any human vaccine can be rolled out,” says Prof Bragg.



News Archive

First doctorate in Thoracic Surgery in Africa awarded
2009-05-12

The University of the Free State (UFS) has become the first university in Africa to award a Ph.D. degree in Thoracic Surgery. The degree was conferred on Prof. Anthony Linegar from the university’s Department of Cardiothoracic Surgery during its recent graduation ceremony.

Thoracic surgery is a challenging subspecialty of cardiothoracic surgery. It began in South Africa in the 1940s and is a broad medico-surgical specialist discipline that involves the diagnosis, operative and peri-operative treatment of acquired and congenital non-cardiac ailments of the chest.

Prof. Linegar became the first academic to conduct a mixed methods analysis of this surgical specialty, which included a systematic review of all the research done in this field in South Africa. The title of his thesis is A Model for the Development of Thoracic Surgery in Central South Africa. The research was based on the hypothesis of a performance gap between the burden of disease in the community and the actual service provision. It makes use of systems theory and project management concepts to develop a model aimed at the development of thoracic surgery.

The research proved that there is a significant under provision of clinical services in thoracic surgery. This was quantified to a factor of 20 times less than should be the case, in diseases such as lung and oesophagus cancer. According to Prof. Linegar, there are multiple reasons for this. Listed amongst these reasons is the fact that thoracic surgery is not part of the undergraduate education in medical training. There tends to be a low level of awareness amongst clinicians as to what the thoracic surgeon offers their patients. The diagnostic and referral patterns in primary and secondary health facilities, where diseases must be picked up and referred early, are not functioning well in this regard. In addition, relatively few cardiothoracic surgeons express an interest in thoracic surgery.

Prof. Linegar’s model is named the ATLAS Mode, which is an acronym for the Advancement of Thoracic Surgery through Analysis and Strategic Planning. It includes the raising of awareness of the role of the specialist thoracic surgeon in the treatment of patients with thoracic diseases as part of the solution to the problem. Furthermore, it aims to develop an accessible and sustainable specialist service that adequately provides for the needs of the community, and that is appropriately represented in health administration circles.

His promoters were Prof. Gert van Zyl, Head of the School of Medicine at the UFS, Prof. Peter Goldstraw, from the Imperial College of London, United Kingdom (UK) and Prof. Francis Smit, Head of the Department of Cardiothoracic Surgery at the UFS.

Prof. Linegar has been with the UFS since 2004, is a graduate from Stellenbosch University in 1984 and completed his postgraduate training in Cardiothoracic Surgery at the University of Cape Town. He was granted a Fellowship in Thoracic Surgery at the Royal Brompton Hospital in London, UK and has since held consultant positions at the UFS, Stellenbosch University and in private practice. He has been involved in registrar training since returning from the UK in 1994 and has extensive experience in intensive care medicine. He has published widely, has presented papers at many international conferences, has been invited as a speaker on many occasions and has won awards for best presentation on three occasions.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
12 May 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept