Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
31 March 2020 | Story Leonie Bolleurs | Photo Supplied
UFS Covid-19 vaccine research team
Prof Robert Bragg and members of the Veterinary Biotechnology research group believe that finding a vaccine for COVID-19 will not be a ‘quick fix’. From the left are: Prof Bragg, Samantha McCarlie, Liese Kilian, and Dr Charlotte Boucher-van Jaarsveld. The photo was taken during the World Veterinary Poultry Association congress in Thailand in 2019.

On 31 March 2020, there were 804 061 coronavirus cases and 39 064 deaths globally due to the outbreak. According to media reports, there is still no licensed vaccine for COVID-2019 – the cause of our current global health emergency.  

Prof Robert Bragg, researcher at the University of the Free State (UFS), says this is without a doubt the most pressing research need in the world today. 

The Veterinary Biotechnology research group in the Department of Microbial, Biochemical, and Food Biotechnology at the UFS recently submitted an article for publication on the design of a possible COVID-19 vaccine, based on work they have done on infectious bronchitis virus (also a coronavirus). The article, authored by the group of which Prof Bragg is a member, is titled: A sub-unit vaccine produced in 'Yarrowia lipolytica' against COVID-19: Lessons learnt from infectious bronchitis virus. 

The research group, consisting of researchers and postgraduate students, is mostly looking at strategies for improved disease control, mainly in avian species, through vaccine development, treatment, and biosecurity.

Prof Bragg says their main aim with this study was to get the research out there so that the bigger pharmaceutical companies could take up the design of a possible COVID-19 vaccine and assist with the development of a vaccine. 

He says the research group’s role in this lengthy process would be to express the protein, which could be used in the development of a possible vaccine. “Thereafter, it will have to be taken up by a vaccine manufacturer to get the vaccine made and to the market.”

Developing a vaccine
Liese Kilian, a member of the research group, finished writing up her MSc thesis in Microbiology in the UFS Department of Microbial, Biochemical, and Food Biotechnology in December 2019 – the same time that COVID-19 originated in China. She has been working on the development of an edible sub-unit vaccine against the infectious bronchitis virus (IBV), which is a widespread avian coronavirus. This virus is specific to poultry and is different from COVID-19. 

Kilian’s project was conducted under the supervision of Prof Bragg and Dr Charlotte Boucher-van Jaarsveld. Dr Boucher-van Jaarsveld is a research fellow in the university’s Department of Microbial, Biochemical and Food Biotechnology.

Kilian, with the assistance of Samantha Mc Carlie, currently a master’s student in the research group, substituted the genetic code of the IBV with the genetic code of the COVID-19 virus, which were already published at that stage. Thus, a gene for the development of a possible sub-unit vaccine against the S1 spike protein of COVID-19 was developed for expression in the same yeast strain used to express the spike protein of IBV. A sub-unit vaccine can be described as part of a pathogen, triggering an immune response against the pathogen from which it is derived.

After Killian successfully developed the gene for this study, she expressed the S1 spike protein of the IBV in a yeast-based expression system developed by the research group. Dr Boucher-van Jaarsveld says this simply means that the yeast takes up the foreign genetic material (viral gene) into its own genetic make-up and makes more of this protein as if it is part of the yeast’s normal material. 

“The images of COVID-19 are being shown constantly in the media and the ‘spikes’ can be seen on all of these images. These spikes are very typical for all coronaviruses and there is some level of similarity between the structure of these spikes in many of the coronaviruses,” Prof Bragg adds.

According to the World Health Organisation, the spike protein is a promising candidate for a sub-unit vaccine due to its immunogenicity and safety, as well as manufacturing and stability considerations during large-scale development.

Prof Bragg says there are many different expression systems that are widely used. Producing the sub-unit vaccine in a yeast species is beneficial for the work they are doing. A yeast expression system is favourable as large-scale production, is less expensive compared to mammalian cell lines, and can be applied as an edible vaccine.

“The technology to grow massive volumes of yeast are also very well established. This, after all, is how beer is made!” Prof Bragg says. Dr Boucher-van Jaarsveld adds: “The expression of an antigen is not necessarily just geared towards vaccines but can also be used in the development of diagnostic tests to screen populations for infections.”

Working with other researchers
“Now that the situation is all but out of control, we maybe need to investigate the possibilities of working with other key researchers at the UFS as well as other universities in South Africa to develop the vaccine or diagnostic reagents locally. Discussions on this aspect are already underway.”

Several other universities in South Africa are also working to find a cure for the virus. Government availed funding for more research on the matter. According to Higher Education, Science and Technology Minister, Blade Nzimande, the University of Cape Town, the Council for Scientific and Industrial Research, as well as the Vaccines Institute of Southern Africa are working on the development of a vaccine.

Prof Bragg expressed the hope of obtaining funding for this work. “Because without funding, we will not be able to do anything with this data,” he says. They are currently investigating different funding options. 

“The sooner we start on the development of a vaccine, the sooner there will be one, but it will not be a ‘quick fix’. It must be stressed that, even if vaccine development is fast-tracked through the regulatory bodies, it will take many months (if not years) to move from the laboratory to the first human experimentation. It will take even longer before any human vaccine can be rolled out,” says Prof Bragg.



News Archive

School of Medicine – heartbeat of the UFS
2015-06-24

Photo: Charl Devenish

During the past year, the School of Medicine at the University of the Free State celebrated several successes in the field of research and cooperation agreements. These successes allow the school to continue delivering world-class teaching to some of the country’s top students.

Earlier this year, a research team from the Department of Medical Microbiology under the guidance of Prof Felicity Burt, received a grant of R500 000 to conduct research on Congo fever (CCHF). Prof Burt is an internationally-recognised expert on Congo fever. The funding that has been awarded will be used to profile immune responses against CCHF viral proteins, and investigate mechanisms and strategies to enhance these immune responses. This study may contribute to the development of a vaccine against this deadly virus.

Prof Stephen Brown from the Department of Paediatrics and Child Health’s expertise and commitment to paediatric cardiology gained him the title of Bloemfonteiner of the Year. Under the leadership of Prof Brown, the department has performed many breakthrough operations and procedures. The most recent of these, was the first hybrid procedure in the country which was performed in November 2014. The department also has an ultramodern hybrid heart catheterisation suite.
 
Prof William Rae from the Department of Medical Physics focuses on medically-applied radiation. Together with his department, they are looking at quantitative radiation dosages. The research is particularly crucial for the successful treatment of cancers. Through this research, it is possible to ensure that patients receive the appropriate radiation dosages in order to obtain the desired effect without the patient being affected negatively.

Dr Nathanial Mofolo, Head of the Department of Family Medicine in the School of Medicine, is since 2006 involved at various levels of hospital management regarding quality assurance, patient safety, clinical and infection management, as well as administration. He is currently curator of internal medical students for four of the UFS’s teaching hospitals. His department is currently focusing on the National Health Plan, HIV and tuberculosis, teaching and learning, as well as service delivery in family medicine.
 
Prof Francis Smit manages the team that, to their knowledge, decellularised the first primate heart. The method has been applied successfully on rat and pig hearts by researchers in America. Recently the team also successfully cultivated beating heart cells ? those of a rat ? in their laboratories. The research is in line with what researchers in Europe and America are working on. In the long run, the research project aims to attempt ‘building’ a heart that could be used for the purposes of organ donation.

The UFS is also home to the only metabolic research unit in the country. The unit was established to focus research on obesity, type II diabetes, metabolic bone diseases and all related diseases. This includes diseases such as diabetes, cholesterol, cancer, psoriasis, lymphoedema, fatigue, high blood pressure, gout, arthritis, fibrosis, skin disorders, PMT, migraine, insomnia, gall and kidney stones and related infections, and obstructive sleep apnea. The unit is a joint initiative between the UFS and Christo Strydom Nutrition. Mr Christo Strydom, a nutritionist and world renowned in the treatment of lymphoedema, invested R5 million in the establishment of this unit at the UFS.  Christo Strydom is also the founder and owner of Christo Strydom Nutrition.

The School of Medicine at the University of the Free State is the only unit on the continent offering in-depth modules in clinical simulation. The Clinical Simulation Unit on the Bloemfontein Campus of the UFS, headed by Dr Mathys Labuschagne, is regarded as the flagship unit of the school and boasts high-technology equipment where students can practice their clinical skills before applying those skills in the real world.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept