Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
31 March 2020 | Story Leonie Bolleurs | Photo Supplied
UFS Covid-19 vaccine research team
Prof Robert Bragg and members of the Veterinary Biotechnology research group believe that finding a vaccine for COVID-19 will not be a ‘quick fix’. From the left are: Prof Bragg, Samantha McCarlie, Liese Kilian, and Dr Charlotte Boucher-van Jaarsveld. The photo was taken during the World Veterinary Poultry Association congress in Thailand in 2019.

On 31 March 2020, there were 804 061 coronavirus cases and 39 064 deaths globally due to the outbreak. According to media reports, there is still no licensed vaccine for COVID-2019 – the cause of our current global health emergency.  

Prof Robert Bragg, researcher at the University of the Free State (UFS), says this is without a doubt the most pressing research need in the world today. 

The Veterinary Biotechnology research group in the Department of Microbial, Biochemical, and Food Biotechnology at the UFS recently submitted an article for publication on the design of a possible COVID-19 vaccine, based on work they have done on infectious bronchitis virus (also a coronavirus). The article, authored by the group of which Prof Bragg is a member, is titled: A sub-unit vaccine produced in 'Yarrowia lipolytica' against COVID-19: Lessons learnt from infectious bronchitis virus. 

The research group, consisting of researchers and postgraduate students, is mostly looking at strategies for improved disease control, mainly in avian species, through vaccine development, treatment, and biosecurity.

Prof Bragg says their main aim with this study was to get the research out there so that the bigger pharmaceutical companies could take up the design of a possible COVID-19 vaccine and assist with the development of a vaccine. 

He says the research group’s role in this lengthy process would be to express the protein, which could be used in the development of a possible vaccine. “Thereafter, it will have to be taken up by a vaccine manufacturer to get the vaccine made and to the market.”

Developing a vaccine
Liese Kilian, a member of the research group, finished writing up her MSc thesis in Microbiology in the UFS Department of Microbial, Biochemical, and Food Biotechnology in December 2019 – the same time that COVID-19 originated in China. She has been working on the development of an edible sub-unit vaccine against the infectious bronchitis virus (IBV), which is a widespread avian coronavirus. This virus is specific to poultry and is different from COVID-19. 

Kilian’s project was conducted under the supervision of Prof Bragg and Dr Charlotte Boucher-van Jaarsveld. Dr Boucher-van Jaarsveld is a research fellow in the university’s Department of Microbial, Biochemical and Food Biotechnology.

Kilian, with the assistance of Samantha Mc Carlie, currently a master’s student in the research group, substituted the genetic code of the IBV with the genetic code of the COVID-19 virus, which were already published at that stage. Thus, a gene for the development of a possible sub-unit vaccine against the S1 spike protein of COVID-19 was developed for expression in the same yeast strain used to express the spike protein of IBV. A sub-unit vaccine can be described as part of a pathogen, triggering an immune response against the pathogen from which it is derived.

After Killian successfully developed the gene for this study, she expressed the S1 spike protein of the IBV in a yeast-based expression system developed by the research group. Dr Boucher-van Jaarsveld says this simply means that the yeast takes up the foreign genetic material (viral gene) into its own genetic make-up and makes more of this protein as if it is part of the yeast’s normal material. 

“The images of COVID-19 are being shown constantly in the media and the ‘spikes’ can be seen on all of these images. These spikes are very typical for all coronaviruses and there is some level of similarity between the structure of these spikes in many of the coronaviruses,” Prof Bragg adds.

According to the World Health Organisation, the spike protein is a promising candidate for a sub-unit vaccine due to its immunogenicity and safety, as well as manufacturing and stability considerations during large-scale development.

Prof Bragg says there are many different expression systems that are widely used. Producing the sub-unit vaccine in a yeast species is beneficial for the work they are doing. A yeast expression system is favourable as large-scale production, is less expensive compared to mammalian cell lines, and can be applied as an edible vaccine.

“The technology to grow massive volumes of yeast are also very well established. This, after all, is how beer is made!” Prof Bragg says. Dr Boucher-van Jaarsveld adds: “The expression of an antigen is not necessarily just geared towards vaccines but can also be used in the development of diagnostic tests to screen populations for infections.”

Working with other researchers
“Now that the situation is all but out of control, we maybe need to investigate the possibilities of working with other key researchers at the UFS as well as other universities in South Africa to develop the vaccine or diagnostic reagents locally. Discussions on this aspect are already underway.”

Several other universities in South Africa are also working to find a cure for the virus. Government availed funding for more research on the matter. According to Higher Education, Science and Technology Minister, Blade Nzimande, the University of Cape Town, the Council for Scientific and Industrial Research, as well as the Vaccines Institute of Southern Africa are working on the development of a vaccine.

Prof Bragg expressed the hope of obtaining funding for this work. “Because without funding, we will not be able to do anything with this data,” he says. They are currently investigating different funding options. 

“The sooner we start on the development of a vaccine, the sooner there will be one, but it will not be a ‘quick fix’. It must be stressed that, even if vaccine development is fast-tracked through the regulatory bodies, it will take many months (if not years) to move from the laboratory to the first human experimentation. It will take even longer before any human vaccine can be rolled out,” says Prof Bragg.



News Archive

UFS lecturer overcomes barriers to become world-class researcher
2016-09-05

Description: Dr Magteld Smith researcher and deaf awareness activist Tags: Dr Magteld Smith researcher and deaf awareness activist

Dr Magteld Smith researcher and deaf awareness
activist, from the Department of Otorhinolaryngology
at the UFS.
Photo: Nonsindiso Qwabe

Renowned author and disability activist Helen Keller once said the problems that come with being deaf are deeper and more far-reaching than any other physical disability, as it means the loss of the human body’s most vital organ, sound.

Dr Magteld Smith, researcher at the Department of Otorhinolaryngology (Ear, Nose and Throat) at the University of the Free State, said hearing loss of any degree can have psychological and sociological implications which may impair the day-to-day functioning of an individual, as well as preventing the person from reaching full potential. That is why Smith is making it her mission to bring about change in the stigmatisation surrounding deafness.

Beating the odds
Smith was born with bilateral (both ears) severe hearing loss, which escalated to profound deafness. But she has never allowed it to hinder her quality of life. She matriculated from a school for the deaf in 1985. In 2008 she received a cochlear implant   a device that replaces the functioning of the damaged inner ear by providing a sense of sound to the deaf person   which she believes transformed her life. Today, she is the first deaf South African to possess two masters degrees and a PhD.

She is able to communicate using spoken language in combination with her cochlear implant, lip-reading and facial expressions. She is also the first and only deaf person in the world to have beaten the odds to become an expert researcher in various fields of deafness and hearing loss, working in an Otorhinolaryngology department.

Advocating for a greater quality of life
An advocate for persons with deafness, Smith conducted research together with other experts around the world which illustrated that cochlear implantation and deaf education were cost-effective in Sub-Saharan Africa. The cost-effectiveness of paediatric cochlear implantation has been well-established in developed countries; but is unknown in low resource settings.

However, with severe-to-profound hearing loss five times higher in low and middle-income countries, the research emphasises the need for the development of cost-effective management strategies in these settings.

This research is one of a kind in that it states the quality of life and academic achievements people born with deafness have when they use spoken language and sign language as a mode of communication is far greater than those who only use sign language without any lip-reading.

Deafness is not the end

What drives Smith is the knowledge that deaf culture is broad and wide. People with disabilities have their own talents and skills. All they need is the support to steer them in the right direction. She believes that with the technological advancements that have been made in the world, deaf people also have what it takes to be self-sufficient world-changers and make a lasting contribution to humanity.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept