Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
31 March 2020 | Story Leonie Bolleurs | Photo Supplied
UFS Covid-19 vaccine research team
Prof Robert Bragg and members of the Veterinary Biotechnology research group believe that finding a vaccine for COVID-19 will not be a ‘quick fix’. From the left are: Prof Bragg, Samantha McCarlie, Liese Kilian, and Dr Charlotte Boucher-van Jaarsveld. The photo was taken during the World Veterinary Poultry Association congress in Thailand in 2019.

On 31 March 2020, there were 804 061 coronavirus cases and 39 064 deaths globally due to the outbreak. According to media reports, there is still no licensed vaccine for COVID-2019 – the cause of our current global health emergency.  

Prof Robert Bragg, researcher at the University of the Free State (UFS), says this is without a doubt the most pressing research need in the world today. 

The Veterinary Biotechnology research group in the Department of Microbial, Biochemical, and Food Biotechnology at the UFS recently submitted an article for publication on the design of a possible COVID-19 vaccine, based on work they have done on infectious bronchitis virus (also a coronavirus). The article, authored by the group of which Prof Bragg is a member, is titled: A sub-unit vaccine produced in 'Yarrowia lipolytica' against COVID-19: Lessons learnt from infectious bronchitis virus. 

The research group, consisting of researchers and postgraduate students, is mostly looking at strategies for improved disease control, mainly in avian species, through vaccine development, treatment, and biosecurity.

Prof Bragg says their main aim with this study was to get the research out there so that the bigger pharmaceutical companies could take up the design of a possible COVID-19 vaccine and assist with the development of a vaccine. 

He says the research group’s role in this lengthy process would be to express the protein, which could be used in the development of a possible vaccine. “Thereafter, it will have to be taken up by a vaccine manufacturer to get the vaccine made and to the market.”

Developing a vaccine
Liese Kilian, a member of the research group, finished writing up her MSc thesis in Microbiology in the UFS Department of Microbial, Biochemical, and Food Biotechnology in December 2019 – the same time that COVID-19 originated in China. She has been working on the development of an edible sub-unit vaccine against the infectious bronchitis virus (IBV), which is a widespread avian coronavirus. This virus is specific to poultry and is different from COVID-19. 

Kilian’s project was conducted under the supervision of Prof Bragg and Dr Charlotte Boucher-van Jaarsveld. Dr Boucher-van Jaarsveld is a research fellow in the university’s Department of Microbial, Biochemical and Food Biotechnology.

Kilian, with the assistance of Samantha Mc Carlie, currently a master’s student in the research group, substituted the genetic code of the IBV with the genetic code of the COVID-19 virus, which were already published at that stage. Thus, a gene for the development of a possible sub-unit vaccine against the S1 spike protein of COVID-19 was developed for expression in the same yeast strain used to express the spike protein of IBV. A sub-unit vaccine can be described as part of a pathogen, triggering an immune response against the pathogen from which it is derived.

After Killian successfully developed the gene for this study, she expressed the S1 spike protein of the IBV in a yeast-based expression system developed by the research group. Dr Boucher-van Jaarsveld says this simply means that the yeast takes up the foreign genetic material (viral gene) into its own genetic make-up and makes more of this protein as if it is part of the yeast’s normal material. 

“The images of COVID-19 are being shown constantly in the media and the ‘spikes’ can be seen on all of these images. These spikes are very typical for all coronaviruses and there is some level of similarity between the structure of these spikes in many of the coronaviruses,” Prof Bragg adds.

According to the World Health Organisation, the spike protein is a promising candidate for a sub-unit vaccine due to its immunogenicity and safety, as well as manufacturing and stability considerations during large-scale development.

Prof Bragg says there are many different expression systems that are widely used. Producing the sub-unit vaccine in a yeast species is beneficial for the work they are doing. A yeast expression system is favourable as large-scale production, is less expensive compared to mammalian cell lines, and can be applied as an edible vaccine.

“The technology to grow massive volumes of yeast are also very well established. This, after all, is how beer is made!” Prof Bragg says. Dr Boucher-van Jaarsveld adds: “The expression of an antigen is not necessarily just geared towards vaccines but can also be used in the development of diagnostic tests to screen populations for infections.”

Working with other researchers
“Now that the situation is all but out of control, we maybe need to investigate the possibilities of working with other key researchers at the UFS as well as other universities in South Africa to develop the vaccine or diagnostic reagents locally. Discussions on this aspect are already underway.”

Several other universities in South Africa are also working to find a cure for the virus. Government availed funding for more research on the matter. According to Higher Education, Science and Technology Minister, Blade Nzimande, the University of Cape Town, the Council for Scientific and Industrial Research, as well as the Vaccines Institute of Southern Africa are working on the development of a vaccine.

Prof Bragg expressed the hope of obtaining funding for this work. “Because without funding, we will not be able to do anything with this data,” he says. They are currently investigating different funding options. 

“The sooner we start on the development of a vaccine, the sooner there will be one, but it will not be a ‘quick fix’. It must be stressed that, even if vaccine development is fast-tracked through the regulatory bodies, it will take many months (if not years) to move from the laboratory to the first human experimentation. It will take even longer before any human vaccine can be rolled out,” says Prof Bragg.



News Archive

Childhood obesity should be curbed early
2017-03-15

Description: Child obesity Tags: Child obesity

Serious intervention by parents is required to deal
with childhood obesity. Prof Louise van den Berg and
a group of final-year PhD students worked on a study
about the prevalence of obesity in six-year-olds in
South Africa.
Photo: Supplied

If your child is overweight when they start school at the age of six, unless you do something about it at that point, the indications are they are going to be overweight teenagers and obese adults. This is according to University of the Free State’s Prof Louise van den Berg.

Evidence has shown that overweight children and teenagers have a greater risk of developing lifestyle diseases such as type 2 diabetes, hypertension and cardiovascular disease later in life, and dying prematurely.

Obesity is a global pandemic rapidly spreading among adults and children, in developed and developing countries alike.

Dr Van den Berg worked with Keagan Di Ascenzo, Maryke Ferreira, Monja-Marie Kok, Anneke Lauwrens, all PhD students with the Department of Nutrition and Dietetics, to conduct the study. Their research found that children who are overweight by the time they turn six should be screened for weight problems.

Why six-year-olds?
Children who are overweight between the ages of two and five are five times more likely to be overweight when they are 12. There are two periods in a normal life cycle when the body makes new fat cells. The first is in the uterus and the second is around the age of six. The second phase lasts from the age of six to puberty.

The study assessed the prevalence of obesity in six-year-olds as part of a campaign in South Africa to raise awareness of the problem among parents and educators.

A total of 99 children were chosen from seven schools in Mangaung, the capital city of Free State. The schools were chosen from quintile four and five schools, which when measured by their own resources and economic circumstances, are well resourced and serve largely middle-class and wealthy communities.

The children’s weight, height and waist circumference were measured and used to calculate a body mass index score and waist-to-height ratio. Both these figures are good predictors for future lifestyle disease risks such as type 2 diabetes, hypertension and cardiovascular disease. A person with a good waist-to-height ratio can wrap a piece of string equal to their height around their waist at least twice.

When the children had a higher body mass index, they also had an increased waist to height ratio. The study found one in four children from the schools surveyed were overweight when they started primary school.

Nipping the fat in the bud
Although there are many factors that play a role in preventing childhood obesity, parents’ perceptions of their children’s weight play an important role. A recent study found that more than 50% of parents underestimate the weight of their obese children. These parents remain unaware of the risks their children face and are not motivated to take any action.

At least half of the parents whose children are overweight struggle to recognise their children’s weight problems fearing that they will be labelled or stigmatised. By the time they turn six overweight children should be referred to dieticians and nutritionists who are qualified to guide their parents in getting them to eat well and be more physically active at pre-primary and primary school.

The high prevalence of weight problems among six-year-olds found in this study is an urgent call to healthcare professionals to step up and empower parents, educators and children with the necessary skills for healthy dietary practices and adequate physical activity.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept