Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
13 November 2020 | Story Leonie Bolleurs | Photo Dr Beanelri Janecke
Five of the multidisciplinary team of researchers and some postgraduate students are determining the depth of soil on the underlying rock layer of the sodic site in the Kruger National Park.

When the Vice-Rector: Research, Prof Corli Witthuhn, invited researchers to apply for funding towards multidisciplinary and interdepartmental projects in 2015, Prof Piet le Roux from the Institute for Groundwater Studies, and the late Dr Fred Kruger from the Centre for Environmental Management took the opportunity and proposed a project to study a catenal ecosystem in the Kruger National Park

According to Dr Beanélri Janecke from the Department of Animal, Wildlife and Grassland Sciences, who led the research team on this project, the team of researchers worked for four years, finding links between the catenal ecosystem (which can be described as a hillslope with different zones forming an environmental gradient from crest to foothill) and processes behind some of its abiotic (non-living) and biotic (living) components. 

Large-scale multidisciplinary research project

All their research on this multidisciplinary project was published in one Special Issue of the Koedoe journal at the end of October 2020. Dr Janecke and Prof Johan van Tol from the Department of Soil, Crop and Climate Sciences were guest editors of this special issue. Dr Llewellyn Foxcroft from SANParks is the Editor-in-Chief of the journal. Other UFS departments involved in this project include the Departments of Genetics; Microbial, Biochemical and Food Biotechnology; Plant Sciences; and Zoology and Entomology.

Dr Janecke says there are 12 articles in this issue and, together with the principal researchers (but excluding postgraduate students), there were 12 authors from the UFS (eight departments and divisions in the Faculty of Natural and Agricultural Sciences) and two from SANParks in associated research collaboration with authors from 14 other institutions. 

This special issue of the Koedoe journal covered research on hydrology, flowpaths, and ground water, including the soil types and properties of different zones on the catena. As stated by Dr Janecke, there are also articles on micro-organisms, fungi, and Fusarium in the soil of the root zone of plants (rhizobiome). 

The environment is degrading fast due to human activities, and there is a dire need for research to look at the bigger picture to find solutions on how to conserve ecosystems and not only smaller parts thereof. – Dr Beanélri Janecke

The journal also comprised articles on the vegetation communities and vegetation structure in the different zones. “Research on how the vegetation recovered post-drought of 2016-2017 and on large and small mammals present on the catena and at the closest waterholes was also published. All of these topics were linked in a discussion article on the catenal ecosystem,” says Dr Janecke.

Multidisciplinary research is not conducted very often on this scale. Many researchers will rather focus on one or a few specific aspects of the ecosystem in a specialist research field. 

SANParks introduced supersite concept

Dr Janecke says scientists from SANParks initiated this supersite concept, where research can be focused on specific areas with similar geology and landscapes in the Kruger National Park to generate multidisciplinary data from separate specialist research fields. 

“Our project went one step further and combined different research fields into one project done on a supersite over the same period. This multidisciplinary project created the opportunity for specialist research fields to be published separately in one special issue, but also to combine the expertise in one project that was summarised in a discussion article.”

She believes that the environment is degrading fast due to human activities, and that there is a dire need for research to look at the bigger picture to find solutions on how to conserve ecosystems and not only smaller parts thereof. “There is a need for a more holistic approach to research, and this special issue provides a framework and basis for similar multidisciplinary studies in future,” states Dr Janecke.

This issue is currently widely marketed on all social platforms of the Koedoe journal and AOSIS Publishers, while a podcast interview is also available at:  https://soundcloud.com/aosis-za/koedoe-interview-podcast-2020 (with permission from Louw Lombaard from AOSIS).

News Archive

Using sugar to make the world a sweeter place
2017-10-13

Description: Deepback sugar Tags: Sugarcane, Dr Deepack Santchurn, Mauritius Sugar Industry Research Institute (MSIRI), Department of Plant Sciences 

Dr Deepack Santchurn, former PhD student in the
Department of Plant Sciences at the UFS,
and plant breeder in the  Mauritius Sugar Industry
Research Institute, with Prof Maryke Labuschagne, left,
Dr Santchurn’s study leader.
Photo: Charl Devenish



Besides it mainly being used for sugar production, sugarcane has emerged as an important alternative for providing clean renewable energy. Dr Deepack Santchurn, who works in the sugarcane breeding department of the Mauritius Sugar Industry Research Institute (MSIRI), believes if he could contribute towards a more environment-friendly and renewable energy through the use of sugarcane biomass, he would consider himself having made a great leap towards a better world. 

Sugarcane is mostly known and exploited for the sugar in its cane stem. According to Dr Santchurn it is not the only thing the crop does well. “Together with certain grasses, it is the finest living collector of sunlight energy and a producer of biomass in unit time. Sugarcane is now recognised worldwide as a potential renewable and environment-friendly bioenergy crop.” 

Significantly more bioenergy can be produced from sugarcane if the production system is not focused on the production and recovery of sucrose alone but on the maximum use to the total above-ground biomass. Diversification within the sugarcane industry is of paramount importance. 

He has been able to identify a few high biomass varieties that can be exploited industrially. One of the varieties is a commercial type with relatively high sugar and low fibre in the cane stem. Dr Santchurn explains: “Its sucrose content is about 0.5% less than the most cultivated commercial variety in Mauritius. Nevertheless, its sugar yield and above-ground biomass yield surpass those of the commercial varieties by more than 24%. The genetic gains compared to commercial varieties were around +50% for total biomass yield and +100% for fibre yield. Its cultivation is strictly related to bio-energy production and the extracted juice can be used as a feed-stock for ethanol and other high-value products.”

Dr Santchurn received his PhD at the UFS’s Department of Plant Sciences during the Winter Graduation Ceremonies in June this year. His study leader was Prof Maryke Labuschagne from the Department of Plant Sciences. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept