Latest News Archive

Please select Category, Year, and then Month to display items
Years
2019 2020 2021 2024
Previous Archive
13 November 2020 | Story Leonie Bolleurs | Photo Dr Beanelri Janecke
Five of the multidisciplinary team of researchers and some postgraduate students are determining the depth of soil on the underlying rock layer of the sodic site in the Kruger National Park.

When the Vice-Rector: Research, Prof Corli Witthuhn, invited researchers to apply for funding towards multidisciplinary and interdepartmental projects in 2015, Prof Piet le Roux from the Institute for Groundwater Studies, and the late Dr Fred Kruger from the Centre for Environmental Management took the opportunity and proposed a project to study a catenal ecosystem in the Kruger National Park

According to Dr Beanélri Janecke from the Department of Animal, Wildlife and Grassland Sciences, who led the research team on this project, the team of researchers worked for four years, finding links between the catenal ecosystem (which can be described as a hillslope with different zones forming an environmental gradient from crest to foothill) and processes behind some of its abiotic (non-living) and biotic (living) components. 

Large-scale multidisciplinary research project

All their research on this multidisciplinary project was published in one Special Issue of the Koedoe journal at the end of October 2020. Dr Janecke and Prof Johan van Tol from the Department of Soil, Crop and Climate Sciences were guest editors of this special issue. Dr Llewellyn Foxcroft from SANParks is the Editor-in-Chief of the journal. Other UFS departments involved in this project include the Departments of Genetics; Microbial, Biochemical and Food Biotechnology; Plant Sciences; and Zoology and Entomology.

Dr Janecke says there are 12 articles in this issue and, together with the principal researchers (but excluding postgraduate students), there were 12 authors from the UFS (eight departments and divisions in the Faculty of Natural and Agricultural Sciences) and two from SANParks in associated research collaboration with authors from 14 other institutions. 

This special issue of the Koedoe journal covered research on hydrology, flowpaths, and ground water, including the soil types and properties of different zones on the catena. As stated by Dr Janecke, there are also articles on micro-organisms, fungi, and Fusarium in the soil of the root zone of plants (rhizobiome). 

The environment is degrading fast due to human activities, and there is a dire need for research to look at the bigger picture to find solutions on how to conserve ecosystems and not only smaller parts thereof. – Dr Beanélri Janecke

The journal also comprised articles on the vegetation communities and vegetation structure in the different zones. “Research on how the vegetation recovered post-drought of 2016-2017 and on large and small mammals present on the catena and at the closest waterholes was also published. All of these topics were linked in a discussion article on the catenal ecosystem,” says Dr Janecke.

Multidisciplinary research is not conducted very often on this scale. Many researchers will rather focus on one or a few specific aspects of the ecosystem in a specialist research field. 

SANParks introduced supersite concept

Dr Janecke says scientists from SANParks initiated this supersite concept, where research can be focused on specific areas with similar geology and landscapes in the Kruger National Park to generate multidisciplinary data from separate specialist research fields. 

“Our project went one step further and combined different research fields into one project done on a supersite over the same period. This multidisciplinary project created the opportunity for specialist research fields to be published separately in one special issue, but also to combine the expertise in one project that was summarised in a discussion article.”

She believes that the environment is degrading fast due to human activities, and that there is a dire need for research to look at the bigger picture to find solutions on how to conserve ecosystems and not only smaller parts thereof. “There is a need for a more holistic approach to research, and this special issue provides a framework and basis for similar multidisciplinary studies in future,” states Dr Janecke.

This issue is currently widely marketed on all social platforms of the Koedoe journal and AOSIS Publishers, while a podcast interview is also available at:  https://soundcloud.com/aosis-za/koedoe-interview-podcast-2020 (with permission from Louw Lombaard from AOSIS).

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept