Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 April 2019 | Story Mamosa Makaya

Since 2016, the University of the Free State Center for Universal Access and Disability Support (CUADS) has received a grant from First National Bank worth R2 498 000, which supports tertiary bursaries for students with disabilities. Bursary holders are funded through CUADS, as the administrator of the bursaries.
  
These are students enrolled for various academic programmes who require academic assistance and/or assistive devices such as electronic handheld magnifiers, laptops, and hearing aids. The FNB grant also covers tuition, accommodation, study material and books, and meals.  The success of the grant is already evident, with one of the recipients having graduated with a Bachelor of Arts degree in December 2018. A second student was capped at the April 2019 graduations with a BSc Honours in Quantity Surveying.
 
Supporting the principles of the ITP

The UFS received the grant from FNB in instalments, starting in the 2016 academic year to date, supporting the needs of 40 disabled students. This grant and the work of CUADS speaks to and supports the principles of the Integrated Transformation Plan (ITP), namely inclusivity, transformation, and diversity. The vision of the Universal Access work stream is to enable the UFS to create an environment where students with disabilities can experience all aspects of student life equal to their non-disabled peers. The ITP provides for the recognition of the rights of people with disabilities as an important lesson in social justice and an opportunity to reinforce university values.

The successful administration of the grant to benefit past and present students is a ‘feather in the cap’ of CUADS, and is a shining example of the impact of public private investment and the endless possibilities that open up when there is a commitment to developing future leaders in academic spaces, allowing them to thrive by creating a learning environment that is welcoming and empowering. 



News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept